Patents by Inventor Yoon-soo Chun

Yoon-soo Chun has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6911740
    Abstract: According to embodiments of the present invention, methods of manufacturing a semiconductor device, and semiconductor devices manufactured thereby, are provided. A field region is formed that defines active regions in a semiconductor substrate. Spaced apart gates are formed on the active regions in the semiconductor substrate. The gates have sidewalls that extend away from the semiconductor substrate. First spacers are formed on the sidewalls of the gates. Second spacers are formed on the first spacers and opposite to the gates. Ion impurities are implanted into the active regions in the semiconductor substrate, adjacent to the gates, using the first and second spacers as an ion implantation mask. A portion of the second spacers is removed to widen the gaps between the gates. A dielectric layer is formed on the semiconductor substrate in the gaps between the gates.
    Type: Grant
    Filed: May 17, 2004
    Date of Patent: June 28, 2005
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Yoon-soo Chun, Dong-won Shin, Ki-nam Kim
  • Patent number: 6852581
    Abstract: According to embodiments of the present invention, methods of manufacturing a semiconductor device, and semiconductor devices manufactured thereby, are provided. A field region is formed that defines active regions in a semiconductor substrate. Spaced apart gates are formed on the active regions in the semiconductor substrate. The gates have sidewalls that extend away from the semiconductor substrate. First spacers are formed on the sidewalls of the gates. Second spacers are formed on the first spacers and opposite to the gates. Ion impurities are implanted into the active regions in the semiconductor substrate, adjacent to the gates, using the first and second spacers as an ion implantation mask. A portion of the second spacers is removed to widen the gaps between the gates. A dielectric layer is formed on the semiconductor substrate in the gaps between the gates.
    Type: Grant
    Filed: October 8, 2002
    Date of Patent: February 8, 2005
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Yoon-soo Chun, Dong-won Shin, Ki-nam Kim
  • Publication number: 20040207099
    Abstract: According to embodiments of the present invention, methods of manufacturing a semiconductor device, and semiconductor devices manufactured thereby, are provided. A field region is formed that defines active regions in a semiconductor substrate. Spaced apart gates are formed on the active regions in the semiconductor substrate. The gates have sidewalls that extend away from the semiconductor substrate. First spacers are formed on the sidewalls of the gates. Second spacers are formed on the first spacers and opposite to the gates. Ion impurities are implanted into the active regions in the semiconductor substrate, adjacent to the gates, using the first and second spacers as an ion implantation mask. A portion of the second spacers is removed to widen the gaps between the gates. A dielectric layer is formed on the semiconductor substrate in the gaps between the gates.
    Type: Application
    Filed: May 17, 2004
    Publication date: October 21, 2004
    Inventors: Yoon-soo Chun, Dong-won Shin, Ki-nam Kim
  • Patent number: 6566241
    Abstract: A method of forming metal contacts in a semiconductor device having an active metal contact region and a bit line contact region is provided. In the method, a contact pad is formed in the active metal contact region and the bit line contact region using a conductive plug. An etch stopper is formed on the upper sides of the conductive plug. A portion of a lower interlayer dielectric layer is etched so that the etch stopper protrudes above the lower interlayer dielectric layer. A bit line stack is formed in the bit line contact region. An etch stopper is formed in the active metal contact region. An upper interlayer dielectric layer is etched to expose the surfaces of the etch stopper and bit line capping layer pattern of the bit line stack. The exposed surfaces of the etch stopper and bit line capping layer pattern are etched to form a contact hole which exposes the conductive plug and a bit line conductive layer of the bit line stack. The contact hole is filled with a conductive layer.
    Type: Grant
    Filed: November 26, 2001
    Date of Patent: May 20, 2003
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Yoon-soo Chun
  • Publication number: 20030075734
    Abstract: According to embodiments of the present invention, methods of manufacturing a semiconductor device, and semiconductor devices manufactured thereby, are provided. A field region is formed that defines active regions in a semiconductor substrate. Spaced apart gates are formed on the active regions in the semiconductor substrate. The gates have sidewalls that extend away from the semiconductor substrate. First spacers are formed on the sidewalls of the gates. Second spacers are formed on the first spacers and opposite to the gates. Ion impurities are implanted into the active regions in the semiconductor substrate, adjacent to the gates, using the first and second spacers as an ion implantation mask. A portion of the second spacers is removed to widen the gaps between the gates. A dielectric layer is formed on the semiconductor substrate in the gaps between the gates.
    Type: Application
    Filed: October 8, 2002
    Publication date: April 24, 2003
    Inventors: Yoon-Soo Chun, Dong-Won Shin, Ki-Nam Kim
  • Publication number: 20020146899
    Abstract: A method of forming metal contacts in a semiconductor device having an active metal contact region and a bit line contact region is provided. In the method, a contact pad is formed in the active metal contact region and the bit line contact region using a conductive plug. An etch stopper is formed on the upper sides of the conductive plug. A portion of a lower interlayer dielectric layer is etched so that the etch stopper protrudes above the lower interlayer dielectric layer. A bit line stack is formed in the bit line contact region. An etch stopper is formed in the active metal contact region. An upper interlayer dielectric layer is etched to expose the surfaces of the etch stopper and bit line capping layer pattern of the bit line stack. The exposed surfaces of the etch stopper and bit line capping layer pattern are etched to form a contact hole which exposes the conductive plug and a bit line conductive layer of the bit line stack. The contact hole is filled with a conductive layer.
    Type: Application
    Filed: November 26, 2001
    Publication date: October 10, 2002
    Applicant: Samsung Electronics Co., Ltd.
    Inventor: Yoon-soo Chun
  • Patent number: 6277702
    Abstract: A storage element of a stacked capacitor having a high dielectric film for a semiconductor device and a method of fabricating the same, the storage element having a storage node comprising a bottom polysilicon layer, a barrier metal layer, and a transition metal layer with sidewall spacers formed on the barrier metal layer. The barrier metal layer and sidewall spacers prevent the polysilicon layer from being oxidized. The polysilicon layer is formed to a thickness that determines the height of the storage node. The transition metal layer directly interfacing the high dielectric film is thinly formed to avoid slope etching thereof and thereby prevent electrical bridges or shorts between adjacent storage nodes.
    Type: Grant
    Filed: February 14, 2000
    Date of Patent: August 21, 2001
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Yoon-Soo Chun, Yoo-Sang Hwang, Tae-Young Chung
  • Patent number: 6229171
    Abstract: A storage element of a stacked capacitor having a high dielectric film for a semiconductor device and a method of fabricating the same, the storage element having a storage node comprising a bottom polysilicon layer, a barrier metal layer, and a transition metal layer with sidewall spacers formed on the barrier metal layer. The barrier metal layer and sidewall spacers prevent the polysilicon layer from being oxidized. The polysilicon layer is formed to a thickness that determines the height of the storage node. The transition metal layer directly interfacing the high dielectric film is thinly formed to avoid slope etching thereof and thereby prevent electrical bridges or shorts between adjacent storage nodes.
    Type: Grant
    Filed: July 2, 1999
    Date of Patent: May 8, 2001
    Assignee: Samsung Electronic Co., Ltd.
    Inventors: Yoon-Soo Chun, Yoo-Sang Hwang, Tae-Young Chung