Patents by Inventor Yoshiaki Naganuma

Yoshiaki Naganuma has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120247746
    Abstract: The vehicle control apparatus configured to control a vehicle includes a fuel cell configured to supply electric power to the vehicle; an air conditioning mechanism having a heater core; a first medium circuit; a radiator installed in the first medium circuit; a bypass circuit formed in the first medium circuit to make a bypass flow of the cooling medium bypassing the radiator; a regulation valve installed in the first medium circuit to regulate a ratio of a flow rate of the cooling medium going through the radiator to a flow rate of the cooling medium going through the bypass circuit; a second medium circuit; a cooling medium circulation pump installed in at least one of the first medium circuit and the second medium circuit; a temperature acquisition module; a warm-up controller; and a state switchover structure.
    Type: Application
    Filed: August 25, 2010
    Publication date: October 4, 2012
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Yuichi Sakajo, Keigo Suematsu, Yoshiaki Naganuma, Masanori Uehara, Takashi Koyama
  • Patent number: 8252469
    Abstract: There is disclosed a fuel cell system including a fuel cell, a water discharge channel through which a water content discharged from this fuel cell flows, and a water discharge valve which discharges, from the system, the water content in this water discharge channel, and the fuel cell system further includes a water discharge control section for controlling the water discharge valve so as to inhibit the water discharge from the water discharge valve from a time when the starting of the system is requested to a time when the temperature of the system reaches a predetermined temperature, in a case where the starting of the system is requested in an environment where an outside air temperature is less than a predetermined threshold value.
    Type: Grant
    Filed: October 16, 2007
    Date of Patent: August 28, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Yoshiaki Naganuma
  • Publication number: 20120141898
    Abstract: When starting operation of a fuel cell below the freezing point, a fuel cell system adjusts the open degree of a hydrogen pressure adjusting valve, introduces hydrogen to a hydrogen entrance of the fuel cell so as to make the total pressure of the hydrogen entrance is a first pressure, and starts a hydrogen circulation pump. If at least one of the cell voltages acquired by a cell voltmeter is below a predetermined voltage, the system determines that clogging is caused in a hydrogen flow channel in the fuel cell. When it is determined that clogging is present, the open degree of the pressure adjusting valve is adjusted and hydrogen is introduced to the hydrogen entrance so that the total pressure of the hydrogen entrance is a second pressure which is higher than the first pressure. Then, the hydrogen circulation pump is stopped and the fuel cell is warmed up to dissolve the clogging of the hydrogen flow channel.
    Type: Application
    Filed: August 21, 2009
    Publication date: June 7, 2012
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Hiromi Tanaka, Yoshiaki Naganuma, Osamu Yumita
  • Publication number: 20120100445
    Abstract: The invention is provided to reliably restore generated voltage that has declined due to clogging of water in a fuel cell stack. A method of operating a fuel cell system having a fuel cell stack that generates electricity through an electrochemical reaction between a fuel gas including hydrogen gas and an oxidation gas, wherein when a generated voltage of the fuel cell stack declines, the water-in-cell content of the fuel cell stack is adjusted so that a variation in cell pressure loss in the fuel cell stack decreases based on a characteristic curve of the water-in-cell content of the fuel cell stack and the cell pressure loss of the fuel cell stack.
    Type: Application
    Filed: July 9, 2009
    Publication date: April 26, 2012
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Yoshiaki Naganuma, Keigo Suematsu, Tomotaka Ishikawa, Hiroyuki Katsuda
  • Patent number: 8158293
    Abstract: A fuel cell system includes a fuel cell, a secondary battery, an oxidizing gas supplier, a gas supply flow regulator, an oxidizing gas supply path, a cathode off-gas exhaust path, a bypass flow path, a flow regulator, an available power output acquirer, and an operation controller, wherein the gas supply flow regulator regulates the gas supply flow rate to cause the oxidizing gas supplier to supply an excess gas flow rate, which is set to be greater than a target fuel gas-requiring gas flow rate, wherein the target fuel gas-requiring gas flow rate is the fuel cell-requiring gas flow rate to be supplied to the fuel cell in order to achieve the target current value, when the available power output is less than a minimum amount of electric power required for the oxidizing gas supplier to increase the gas supply flow rate from 0 to a preset gas flow rate within a preset time period, and the operation controller controls the flow regulator to make the bypass flow rate equal to a difference gas flow rate between th
    Type: Grant
    Filed: May 9, 2011
    Date of Patent: April 17, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Yoshiaki Naganuma, Hiromi Tanaka, Osamu Yumita, Masashi Fuji, Nobukazu Mizuno
  • Publication number: 20120015272
    Abstract: A fuel cell system suppresses the deterioration of an electrolyte membrane of a fuel cell. The fuel cell system comprises: a temperature rise speed calculation unit for calculating a target temperature rise speed of the fuel cell using a temperature of the fuel cell and a water content of the fuel cell; and a drive control unit for controlling a drive of the cooling water pump using the temperature rise speed of the fuel cell and the target temperature rise speed calculated by the temperature rise speed calculation unit. The drive control unit controls the drive of the cooling water pump such that a circulation amount of the cooling water is decreased when the temperature rise speed of the fuel cell is below the target temperature rise speed and controls the drive of the cooling water pump such that the circulation amount of the cooling water is increased when the temperature rise speed of the fuel cell is equal to or greater than the target temperature rise speed.
    Type: Application
    Filed: April 27, 2010
    Publication date: January 19, 2012
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Yoshiaki Naganuma, Hiromi Tanaka, Osamu Yumita, Takayoshi Tezuka, Nobukazu Mizuno, Masashi Fuji
  • Publication number: 20120015263
    Abstract: In order to cause a plurality of cells in a fuel cell to be recovered to a desired humidity state, it is configured to determine that the cells present a mixture of dry and overly humid states in the case where a predetermined condition is satisfied, and in the case where it is determined that the cells present the mixture, humidifying control is carried out to cause all the cells to attain the overly humid state, and thereafter, drying control is carried out to dry all the cells, to thereby cause the plurality of cells to be recovered to a predetermined humidity state.
    Type: Application
    Filed: November 18, 2009
    Publication date: January 19, 2012
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Keigo Suematsu, Tomotaka Ishikawa, Yoshiaki Naganuma, I, Hiroyuki Katsuda
  • Publication number: 20120015270
    Abstract: Provided is a fuel cell system including: a fuel cell which generates power by an electrochemical reaction between an oxidant gas supplied to an oxidant gas flow path and a fuel gas supplied to a fuel gas flow path; and a controller which adjusts an amount of the oxidant gas supplied to the fuel cell and a voltage of the fuel cell. The controller has an obstruction degree determining unit which determines a degree of obstruction of the oxidant gas flow path based on a stoichiometric ratio of the oxidant gas and the voltage of the fuel cell during a low-efficiency operation in which the stoichiometric ratio of the oxidant gas is reduced from the stoichiometric ratio of the oxidant gas during a normal operation and heat discharged from the fuel cell is increased from that during the normal operation. This improves stability of the low-efficiency operation of the fuel cell system.
    Type: Application
    Filed: July 30, 2009
    Publication date: January 19, 2012
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventor: Yoshiaki Naganuma
  • Publication number: 20120003557
    Abstract: An object is to suppress the degradation of durability due to a heat concentration while performing a rapid warm-up operation as necessary, when starting a fuel cell system at temperatures below freezing point.
    Type: Application
    Filed: January 27, 2010
    Publication date: January 5, 2012
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Hiromi Tanaka, Yoshiaki Naganuma, Osamu Yumita, Takayoshi Tezuka, Nobukazu Mizuno, Masashi Fuji
  • Patent number: 8071249
    Abstract: The fuel cell system is provided with a fuel cell, a fuel supply system for supplying fuel gas to the fuel cell, an injector for regulating the gas state upstream in the fuel supply system and supplying the gas downstream, and control means for driving and controlling the injector at a predetermined drive cycle. The control means sets the working state of the injector in response to the operating state of the fuel cell.
    Type: Grant
    Filed: July 21, 2010
    Date of Patent: December 6, 2011
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Yoshinobu Hasuka, Yoshiaki Naganuma
  • Publication number: 20110293972
    Abstract: A fuel cell system includes a fuel cell, a secondary battery, an oxidizing gas supplier, a gas supply flow regulator, an oxidizing gas supply path, a cathode off-gas exhaust path, a bypass flow path, a flow regulator, an available power output acquirer, and an operation controller, wherein the gas supply flow regulator regulates the gas supply flow rate to cause the oxidizing gas supplier to supply an excess gas flow rate, which is set to be greater than a target fuel gas-requiring gas flow rate, wherein the target fuel gas-requiring gas flow rate is the fuel cell-requiring gas flow rate to be supplied to the fuel cell in order to achieve the target current value, when the available power output is less than a minimum amount of electric power required for the oxidizing gas supplier to increase the gas supply flow rate from 0 to a preset gas flow rate within a preset time period, and the operation controller controls the flow regulator to make the bypass flow rate equal to a difference gas flow rate between th
    Type: Application
    Filed: May 9, 2011
    Publication date: December 1, 2011
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Yoshiaki NAGANUMA, Hiromi TANAKA, Osamu YUMITA, Masashi FUJI, Nobukazu MIZUNO
  • Publication number: 20110256461
    Abstract: There is disclosed a fuel cell system or the like capable of sufficiently reducing an exhaust hydrogen concentration even in a case where a fuel cell is operated in a state of a low power generation efficiency. A bypass valve B1 is arranged between an oxidation gas supply path 11 and a cathode-off gas channel 12. In a state in which supply of an oxidation gas to a cathode falls short, pumping hydrogen is included in a cathode-off gas. Therefore, a valve open degree of the bypass valve B1 is regulated, and a flow rate of bypass air is regulated to control the exhaust hydrogen concentration.
    Type: Application
    Filed: June 29, 2011
    Publication date: October 20, 2011
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Hiroyuki IMANISHI, Kota MANABE, Tomoya OGAWA, Go TEJIMA, Yoshiaki NAGANUMA, Hironori NOTO
  • Publication number: 20110212377
    Abstract: There is disclosed a fuel cell system including a fuel cell, a fuel supply system to supply a fuel gas to the fuel cell, an injector which adjusts a gas state on an upstream side of the fuel supply system to supply the gas to a downstream side, and a control unit which drives and controls the injector in a predetermined drive cycle. The control unit sets the drive cycle of the injector in accordance with an operation state of the fuel cell.
    Type: Application
    Filed: April 15, 2011
    Publication date: September 1, 2011
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Norimasa ISHIKAWA, Yoshiaki NAGANUMA, Yoshinobu HASUKA
  • Patent number: 7976067
    Abstract: Hydrogen leaking from a hydrogen cylinder has a lower specific gravity than air, thus rises in a cylinder housing space, and reaches a ventilating opening constituted by a group of slits formed in an upper surface of a roof cover. At this time, the ventilating opening is formed in a position above the hydrogen cylinder, and thus the leaking hydrogen can reach the ventilating opening in a short distance as compared with the case where the ventilating opening is formed in a position apart from the position above the hydrogen cylinder. The ventilating openings are provided in a plurality of locations, and thus the leaking hydrogen reaches the closest ventilating opening. The hydrogen gas reaches the ventilating opening, passes upward therethrough and flows outside.
    Type: Grant
    Filed: January 6, 2006
    Date of Patent: July 12, 2011
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Yoshiaki Naganuma, Norimasa Ishikawa
  • Publication number: 20100285382
    Abstract: The fuel cell system is provided with a fuel cell, a fuel supply system for supplying fuel gas to the fuel cell, an injector for regulating the gas state upstream in the fuel supply system and supplying the gas downstream, and control means for driving and controlling the injector at a predetermined drive cycle. The control means sets the working state of the injector in response to the operating state of the fuel cell.
    Type: Application
    Filed: July 21, 2010
    Publication date: November 11, 2010
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Yoshinobu HASUKA, Yoshiaki NAGANUMA
  • Publication number: 20100266916
    Abstract: Provided is a fuel cell system capable of making a shift of an operation state while optically controlling an output voltage and an output voltage of a fuel cell. When an ECU judges that the time when an operation should be shifted from a low-efficiency operation to a normal operation has come, the ECU performs, as preprocessing prior to a shift to a ?V control, processing of increasing an oxidant gas supplied to a fuel cell stack by a predetermined amount. After this processing, the ECU detects output power, calculates an output power deviation, and then compares the output power deviation with a set deviation threshold. When the output power deviation exceeds the deviation threshold, the ECU carries out the ?V control, and then carries out an I-V control. Meanwhile, when the output power deviation does not exceed the deviation threshold, the ECU judges that the time when the ?V control is carried out has not come yet, and automatically starts the I-V control without carrying out the ?V control.
    Type: Application
    Filed: December 18, 2008
    Publication date: October 21, 2010
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Hiroyuki Imanishi, Kota Manabe, Yoshiaki Naganuma, Tomoya Ogawa
  • Publication number: 20100266920
    Abstract: Even if a failure occurs in a bypass valve during low-efficiency power generation, the occurrence of an excessive stoichiometry ratio in a fuel cell can be prevented. An output from a pressure sensor or a current sensor is monitored by a control device, and when a failure associated with a closed-valve malfunction of the bypass valve occurs, the degree of opening of the pressure regulating valve is increased to increase an amount of cathode-off gas exhaust, and a revolution speed of an air compressor is reduced to an amount of air discharged by the air compressor, thereby preventing an excessive stoichiometry ratio in the fuel cell.
    Type: Application
    Filed: December 2, 2008
    Publication date: October 21, 2010
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Naoki Kanie, Yoshiaki Naganuma, Tomoya Ogawa
  • Publication number: 20100227238
    Abstract: There is disclosed a fuel cell system including a fuel cell, a water discharge channel through which a water content discharged from this fuel cell flows, and a water discharge valve which discharges, from the system, the water content in this water discharge channel, and the fuel cell system further includes a water discharge control section for controlling the water discharge valve so as to inhibit the water discharge from the water discharge valve from a time when the starting of the system is requested to a time when the temperature of the system reaches a predetermined temperature, in a case where the starting of the system is requested in an environment where an outside air temperature is less than a predetermined threshold value.
    Type: Application
    Filed: October 16, 2007
    Publication date: September 9, 2010
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventor: Yoshiaki Naganuma
  • Publication number: 20100209791
    Abstract: Provided is a fuel cell system which can perform sufficient scavenging during a current system operation even if required sufficient scavenging during the previous system stop is not performed. When a control device detects that a system start command is input and a low temperature mode flag is turned “ON”, the control device compares a measured impedance during the previous system stop stored in a measured impedance memory to a low temperature start target impedance It stored in a reference impedance memory, to judge whether or not a scavenging process performed during the previous system stop has been insufficient. When the control device judges that the scavenging process is insufficient, an immediate warm-up operation is executed during the current system operation to immediately raise the temperature.
    Type: Application
    Filed: July 23, 2008
    Publication date: August 19, 2010
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Kota Manabe, Shinji Aso, Yoshiaki Naganuma
  • Publication number: 20100159342
    Abstract: Disclosed is a fuel cell system including a fuel cell which generates a power, and control means for decreasing the amount of a reactant gas to be supplied to the fuel cell to an amount smaller than that during normal power generation to realize low-efficiency power generation of the fuel cell. The control means sets the voltage lower limit value of the fuel cell so that the amount of an anode gas (pumping hydrogen) to be formed in a cathode of the fuel cell during the low-efficiency power generation is a predetermined amount or less.
    Type: Application
    Filed: July 3, 2008
    Publication date: June 24, 2010
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Hiroyuki Imanishi, Kota Manabe, Tomoya Ogawa, Yoshiaki Naganuma