Patents by Inventor Yoshifumi SHINZATO

Yoshifumi SHINZATO has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11535919
    Abstract: The invention concerns a method for producing a 6xxx series aluminium sheet comprising the steps of homogenizing an ingot made from a 6XXX series aluminum alloy; cooling the homogenized ingot with a cooling rate in a range of from 150° C./h to 2000° C./h directly to the hot rolling starting temperature; hot rolling the ingot to a hot rolling final thickness and coiling at the hot rolling final thickness with such conditions that at least 50% recrystallization is obtained; cold rolling to obtain a cold rolled sheet. The method of the invention is particularly helpful to make sheets for the automotive industry which combine high tensile yield strength and good formability properties suitable for cold stamping operations, as well as high surface quality and high corrosion resistance with a high productivity.
    Type: Grant
    Filed: July 12, 2017
    Date of Patent: December 27, 2022
    Assignees: CONSTELLIUM NEUF-BRISACH, UACJ CORP.
    Inventors: Gilles Guiglionda, Laurent Boissonnet, Sylvain Carisey, Yusuke Yamamoto, Yoshifumi Shinzato, Mineo Asano, Yoichiro Betsuki
  • Patent number: 11499209
    Abstract: The present disclosure shows a superplastic-forming aluminum alloy plate that has excellent properties for superplastic-forming, such as blow forming, and that has excellent surface properties after forming. Shown is a superplastic-forming aluminum alloy plate and a production method therefor, the superplastic-forming aluminum alloy plate being characterized by comprising an aluminum alloy which contains 2.0 to 6.0 mass % Mg, 0.5 to 1.8 mass % Mn and 0.40 mass % or less Cr and in which the balance consists of Al and unavoidable impurities, wherein the unavoidable impurities are restricted to have 0.20 mass % or less Fe and 0.20 mass % or less Si, the 0.2% proof stress is 340 MPa or more, and the density of intermetallic compounds having an equivalent circular diameter of 5 to 15 ?m at the RD-TD plane which extends along the center of the plate cross-section is 50 to 400 pieces/mm2.
    Type: Grant
    Filed: October 8, 2015
    Date of Patent: November 15, 2022
    Assignee: UACJ CORPORATION
    Inventors: Tomoyuki Kudo, Yoshifumi Shinzato, Ryo Kuramoto
  • Patent number: 11459642
    Abstract: The present disclosure shows a superplastic-forming aluminum alloy plate that has excellent properties for superplastic-forming, such as blow forming, and that has excellent surface properties after forming. Shown is a superplastic-forming aluminum alloy plate and a production method therefor, the superplastic-forming aluminum alloy plate being characterized by comprising an aluminum alloy which contains 2.0 to 6.0 mass % Mg, 0.5 to 1.8 mass % Mn and 0.40 mass % or less Cr and in which the balance consists of Al and unavoidable impurities, wherein the unavoidable impurities are restricted to have 0.20 mass % or less Fe and 0.20 mass % or less Si, the 0.2% proof stress is 340 MPa or more, and the density of intermetallic compounds having an equivalent circular diameter of 5 to 15 ?m at the RD-TD plane which extends along the center of the plate cross-section is 50 to 400 pieces/mm2.
    Type: Grant
    Filed: October 8, 2015
    Date of Patent: October 4, 2022
    Assignee: UACJ CORPORATION
    Inventors: Tomoyuki Kudo, Yoshifumi Shinzato, Ryo Kuramoto
  • Publication number: 20220220588
    Abstract: Shown is a superplastic-forming aluminum alloy plate and a production method therefor, the superplastic-forming aluminum alloy plate being characterized by comprising an aluminum alloy which contains 2.0 to 6.0 mass % Mg, 1.2 to 1.5 mass % Mn and 0.001 to 0.05 mass % Cr and in which the balance consists of Al and unavoidable impurities, wherein the unavoidable impurities are restricted to have 0.20 mass % or less Fe and 0.20 mass % or less Si, the 0.2% proof stress is 340 MPa or more, and the density of intermetallic compounds having an equivalent circular diameter of 5 to 15 ?m at the RD-TD plane which extends along the center of the plate cross-section is 50 to 400 pieces/mm2, and a frequency of Kernel Average Misorientation of 15° or less at the RD-TD plane which extends along the center of the plate cross-section is 0.34 or less.
    Type: Application
    Filed: March 28, 2022
    Publication date: July 14, 2022
    Applicant: UACJ CORPORATION
    Inventors: Tomoyuki KUDO, Yoshifumi SHINZATO, Ryo KURAMOTO
  • Patent number: 11053576
    Abstract: The present disclosure relates to a method for producing an aluminum alloy rolled material for deformation molding, the method including: a step of performing homogenization treatment of an ingot including an aluminum alloy with predetermined composition; a step of cooling the aluminum alloy after the homogenization treatment so that an average cooling rate in an ingot thickness of ¼ part from 500° C. to 320° C. is 30° C./h to 2000° C./h; and a step of starting hot rolling at 370° C. to 440° C. and winding the hot-rolled aluminum alloy at 310 to 380° C., in which the method for producing an aluminum alloy rolled material for deformation molding further includes a step of retaining the aluminum alloy after the cooling step for 0.17 hours or more at a heating temperature before rolling set within a range of 370° C. to 440° C. before the hot rolling.
    Type: Grant
    Filed: July 12, 2017
    Date of Patent: July 6, 2021
    Assignee: UACJ Corporation
    Inventors: Yusuke Yamamoto, Yoshifumi Shinzato, Mineo Asano
  • Publication number: 20200157668
    Abstract: The present disclosure relates to an aluminum alloy plate having a composition containing Si: 0.03 to 0.35%, Fe: 0.03 to 0.35%, Mg: 3.0 to 5.0%, Cu: more than 0.09% and less than 0.50%, and Mn: more than 0.05% and 0.35% or less in terms of mass %, with the balance including Al and inevitable impurities.
    Type: Application
    Filed: January 24, 2020
    Publication date: May 21, 2020
    Applicant: UACJ CORPORATION
    Inventors: Yoshifumi SHINZATO, Takeshi NAGAI, Mineo ASANO
  • Publication number: 20190226070
    Abstract: The present invention provides an Al—Mg—Si-based hot forming aluminum alloy plate which has not only high age-hardening property but also a high m value in a high strain rate range and excellent surface properties after forming and which is suitable for hot forming. The hot forming aluminum alloy plate comprises an aluminum alloy comprising 0.3 to 1.8 mass % Mg, 0.6 to 2.0 mass % Si and 0.04 to 0.20 mass % Fe. In the aluminum alloy, Mn content is restricted to 0.030 mass % or less, and Cr content is restricted to 0.030 mass % or less, and a balance comprises Al and unavoidable impurities. The hot forming aluminum alloy plate has an electrical conductivity of 60% or less according to IACS %. A production method of the hot forming aluminum alloy plate is also provided.
    Type: Application
    Filed: April 2, 2019
    Publication date: July 25, 2019
    Inventors: Yoshifumi SHINZATO, Tomoyuki KUDO
  • Publication number: 20190153577
    Abstract: The invention concerns a method for producing a 6xxx series aluminium sheet comprising the steps of homogenizing an ingot made from a 6XXX series aluminum alloy; cooling the homogenized ingot with a cooling rate in a range of from 150° C./h to 2000° C./h directly to the hot rolling starting temperature; hot rolling the ingot to a hot rolling final thickness and coiling at the hot rolling final thickness with such conditions that at least 50% recrystallization is obtained; cold rolling to obtain a cold rolled sheet. The method of the invention is particularly helpful to make sheets for the automotive industry which combine high tensile yield strength and good formability properties suitable for cold stamping operations, as well as high surface quality and high corrosion resistance with a high productivity.
    Type: Application
    Filed: July 12, 2017
    Publication date: May 23, 2019
    Inventors: Gilles GUIGLIONDA, Laurent BOISSONNET, Sylvain CARISEY, Yusuke YAMAMOTO, Yoshifumi SHINZATO, Mineo ASANO, Yoichiro BETSUKI
  • Publication number: 20190119800
    Abstract: The present disclosure relates to a method for producing an aluminum alloy rolled material for deformation molding, the method including: a step of performing homogenization treatment of an ingot including an aluminum alloy with predetermined composition; a step of cooling the aluminum alloy after the homogenization treatment so that an average cooling rate in an ingot thickness of 1/4 part from 500° C. to 320° C. is 30° C./h to 2000° C./h; and a step of starting hot rolling at 370° C. to 440° C. and winding the hot-rolled aluminum alloy at 310 to 380° C., in which the method for producing an aluminum alloy rolled material for deformation molding further includes a step of retaining the aluminum alloy after the cooling step for 0.17 hours or more at a heating temperature before rolling set within a range of 370° C. to 440° C. before the hot rolling.
    Type: Application
    Filed: July 12, 2017
    Publication date: April 25, 2019
    Inventors: Yusuke Yamamoto, Yoshifumi Shinzato, Mineo Asano
  • Publication number: 20170306453
    Abstract: The present disclosure shows a superplastic-forming aluminum alloy plate that has excellent properties for superplastic-forming, such as blow forming, and that has excellent surface properties after forming. Shown is a superplastic-forming aluminum alloy plate and a production method therefor, the superplastic-forming aluminum alloy plate being characterized by comprising an aluminum alloy which contains 2.0 to 6.0 mass % Mg, 0.5 to 1.8 mass % Mn and 0.40 mass % or less Cr and in which the balance consists of Al and unavoidable impurities, wherein the unavoidable impurities are restricted to have 0.20 mass % or less Fe and 0.20 mass % or less Si, the 0.2% proof stress is 340 MPa or more, and the density of intermetallic compounds having an equivalent circular diameter of 5 to 15 ?m at the RD-TD plane which extends along the center of the plate cross-section is 50 to 400 pieces/mm2.
    Type: Application
    Filed: October 8, 2015
    Publication date: October 26, 2017
    Applicant: UACJ Corporation
    Inventors: Tomoyuki KUDO, Yoshifumi SHINZATO, Ryo KURAMOTO
  • Publication number: 20170247781
    Abstract: The present invention provides an Al—Mg—Si-based hot forming aluminum alloy plate which has not only high age-hardening property but also a high m value in a high strain rate range and excellent surface properties after forming and which is suitable for hot forming. The hot forming aluminum alloy plate comprises an aluminum alloy comprising 0.3 to 1.8 mass % Mg, 0.6 to 2.0 mass % Si and 0.04 to 0.20 mass % Fe. In the aluminum alloy, Mn content is restricted to 0.030 mass % or less, and Cr content is restricted to 0.030 mass % or less, and a balance comprises Al and unavoidable impurities. The hot forming aluminum alloy plate has an electrical conductivity of 60% or less according to IACS %. A production method of the hot forming aluminum alloy plate is also provided.
    Type: Application
    Filed: February 24, 2017
    Publication date: August 31, 2017
    Inventors: Yoshifumi Shinzato, Tomoyuki Kudo
  • Publication number: 20150059934
    Abstract: An Al—Zn—Mg—Cu-based high-strength aluminum alloy thin extruded shape has a yield strength of 700 MPa or more. The high-strength aluminum alloy thin extruded shape includes 9.0 to 13.0 mass % of Zn, 2.0 to 3.0 mass % of Mg, 1.0 to 2.0 mass % of Cu, and 0.05 to 0.3 mass % of Zr, with the balance being Al and unavoidable impurities, fine precipitates having a circle equivalent diameter of 5 to 20 nm being dispersed in a crystal grain of the extruded shape in a number of 4000 to 6000 per ?m2.
    Type: Application
    Filed: August 29, 2014
    Publication date: March 5, 2015
    Inventors: Yoshifumi SHINZATO, Hidenori HATTA