Patents by Inventor Yoshihiko Minachi

Yoshihiko Minachi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6258290
    Abstract: The magnetic powder and the sintered magnet of the invention contains a primary phase of a hexagonal ferrite containing A, Co or R wherein A represents Sr, Ba or Ca, and R represents at least one element which may be rare earth elements including Y, and Bi, and have at least two different Curie temperatures. wherein the two different Curie temperatures are present within a range of from 400 to 480° C., and an absolute value of a difference therebetween is 5° C. or more. As both the saturation magnetization and the magnetic anisotropy of the M type ferrite therein are increased, the magnetic powder and the wintered magnet have a high residual magnetic flux density and a high coercive force, which conventional M type ferrite magnets could not have, while having excellent temperature characteristics of coercive force.
    Type: Grant
    Filed: June 13, 2000
    Date of Patent: July 10, 2001
    Assignee: TDK Corporation
    Inventors: Hitoshi Taguchi, Kiyoyuki Masuzawa, Yoshihiko Minachi, Kazumasa Iida, Mitsuaki Sasaki, Fumihiko Hirata
  • Patent number: 6248253
    Abstract: An object of the invention is to simultaneously increase the saturation magnetization and magnetic anisotropy of M type ferrite, thereby realizing a hexagonal ferrite magnet having a high remanence and high coercivity which could never be achieved in prior art M type hexagonal ferrite magnets. The object is attained by a hexagonal ferrite magnet comprising A, R, and Fe, wherein A represents at least one element selected from among Sr, Ba, and Ca, and R represents an element capable of assuming a valence of +3 or +4 and having an ionic radius of at least 1.00 angstrom, and n/N is up to 0.35 provided that N is the total number of crystal grains and n is the number of crystal grains having stacking faults.
    Type: Grant
    Filed: March 19, 1999
    Date of Patent: June 19, 2001
    Assignee: TDK Corporation
    Inventors: Hitoshi Taguchi, Kiyoyuki Masuzawa, Yoshihiko Minachi, Kazumasa Iida
  • Patent number: 6139766
    Abstract: The invention aims to provide a ferrite magnet having a high remanence and a high coercivity which are unachievable with prior art hexagonal ferrite magnets, by realizing a hexagonal ferrite whose saturation magnetization and magnetic anisotropy are both high; a ferrite magnet having a high remanence and a high coercivity as well as significantly improved temperature properties of coercivity and experiencing a minimized drop of coercivity even in a low temperature range; a ferrite magnet having a high remanence and a high coercivity using relatively coarse ferrite particles with a particle diameter in excess of 1 .mu.m; and a magnetic recording medium having a high remanence and thermal stability.
    Type: Grant
    Filed: October 26, 1998
    Date of Patent: October 31, 2000
    Assignee: TDK Corporation
    Inventors: Hitoshi Taguchi, Kazumasa Iida, Kikoyuki Masuzawa, Yoshihiko Minachi
  • Patent number: 6086781
    Abstract: The magnetic powder and the sintered magnet of the invention contains a primary phase of a hexagonal ferrite containing A, Co or R wherein A represents Sr, Ba or Ca, and R represents at least one element which may be rare earth elements including Y, and Bi, and have at least two different Curie temperatures, wherein the two different Curie temperatures are present within a range of from 400 to 480.degree. C., and an absolute value of a difference therebetween is 5.degree. C. or more. As both the saturation magnetization and the magnetic anisotropy of the M type ferrite therein are increased, the magnetic powder and the wintered magnet have a high residual magnetic flux density and a high coercive force, which conventional M type ferrite magnets could not have, while having excellent temperature characteristics of coercive force.
    Type: Grant
    Filed: May 19, 1999
    Date of Patent: July 11, 2000
    Assignee: TDK Corporation
    Inventors: Hitoshi Taguchi, Kiyoyuki Masuzawa, Yoshihiko Minachi, Kazumasa Iida, Mitsuaki Sasaki, Fumihiko Hirata
  • Patent number: 5951937
    Abstract: The method of the invention uses a molding slurry containing a particulate oxide magnetic material and water and having a dispersant added thereto. The dispersant is an organic compound having a hydroxyl group and a carboxyl group or a neutralized salt thereof or a lactone thereof, an organic compound having a hydroxymethylcarbonyl group, or an organic compound having an enol form hydroxyl group dissociable as an acid or a neutralized salt thereof. The organic compound has 3 to 20 carbon atoms, with the hydroxyl group being attached to at least 50% of carbon atoms other than the carbon atom forming a double bond with an oxygen atom. Citric acid or a neutralized salt thereof is also useful as the dispersant. The addition of the dispersant facilitates the wetting of the particulate oxide magnetic material with water and improves the dispersion of primary particles and a degree of orientation upon molding.
    Type: Grant
    Filed: December 3, 1997
    Date of Patent: September 14, 1999
    Assignee: TDK Corporation
    Inventors: Hitoshi Taguchi, Kiyoyuki Masuzawa, Yoshihiko Minachi, Kazumasa Iida