Patents by Inventor Yoshihiko Nakano

Yoshihiko Nakano has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8080347
    Abstract: There is provided a catalyst for a fuel cell, which simultaneously realizes excellent catalytic activity and catalytic stability. The catalyst for a fuel cell comprises a fine particle of a metal represented by formula: PtxRuySizT1u wherein T1 represents at least one element selected from the group consisting of nickel (Ni), tungsten (W), vanadium (V), and molybdenum (Mo); x=30 to 90 atomic %; y=0 to 50 atomic %; z=0.5 to 20 atomic %; and u=0.5 to 40 atomic %, or comprises a fine particle of a metal represented by formula: PtxRuySizT2u wherein T2 represents at least one element selected from the group consisting of hafnium (Hf), tin (Sn), zirconium (Zr), niobium (Nb), titanium (Ti), tantalum (Ta), chromium (Cr), and aluminum (Al); x=30 to 90 atomic %; y=0 to 50 atomic %; z=0.5 to 20 atomic %; and u=0.5 to 40 atomic %.
    Type: Grant
    Filed: March 17, 2008
    Date of Patent: December 20, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Wu Mei, Taishi Fukazawa, Takahiro Sato, Itsuko Mizutani, Yoshihiko Nakano
  • Patent number: 7931935
    Abstract: This invention provides a process for producing a membrane electrode assembly which has high and stable catalytic activity, and suppressed deterioration in catalytic activity during operation, and can prevent a deterioration in performance attributable to a structural factor of the membrane electrode assembly. The process comprises the step of, after the washing/removing step, drying the catalyst electrode in an atmosphere having a lower oxygen partial pressure than the air. The anode/cathode is a covered catalyst electrode having a structure formed by supporting/depositing a catalytically active material composed mainly of platinum/ruthenium subjected to the potential holding step, the washing/removing step, and the drying step, on a porous electroconductive carrier to cover at least a part of the porous electroconductive carrier with the ion conductive material.
    Type: Grant
    Filed: March 17, 2008
    Date of Patent: April 26, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Masaaki Yamamoto, Wu Mei, Tsuyoshi Kobayashi, Taishi Fukazawa, Itsuko Mizutani, Yoshihiko Nakano
  • Patent number: 7892694
    Abstract: An electrolytic membrane comprising a porous membrane substrate containing a cross-linked polymer electrolyte having at least a structural component shown by following chemical formula 1: wherein A represents a repeating unit having an aromatic hydrocarbon group substituted by at least a sulfonic acid group, B represents a repeating unit having one of a nitrogen-containing hetero ring compound residue, and the sulfate, hydrochloride or organic sulfonate thereof, C represents a repeating unit having a cross-linked group, and X, Y and Z represent mol fractions of respective repeating units in the chemical formula 1, with 0.34?X?0.985, 0.005?Y?0.49, 0.01?Z?0.495 and Y?X and Z?X, provided that, in the repeating unit A, a ratio of the aromatic hydrocarbon group substituted by at least a sulfonic acid group is 0.3 to 1.0, and the number of the sulfonic acid group in the aromatic hydrocarbon group is 1 to 3.
    Type: Grant
    Filed: December 27, 2006
    Date of Patent: February 22, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yoshihiko Nakano, Hideo Ohta, Kazuhiro Yasuda, Jun Tamura
  • Patent number: 7887940
    Abstract: A proton conductive inorganic material includes oxide particles containing at least one element X selected from the group consisting of W, Mo, Cr, B and V, an oxide carrier carrying the oxide particles and containing at least one element Y selected from the group consisting of Sn, Hf, Ge, Ga, In, Ce and Nb.
    Type: Grant
    Filed: March 27, 2006
    Date of Patent: February 15, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Jun Tamura, Yoshihiko Nakano, Hideo Oota
  • Patent number: 7871740
    Abstract: A fuel cell, which can supply stable output even at elevated temperatures and can maintain its power generation performance over a long period of time, can be realized by an electrode for a fuel cell comprising a catalyst layer formed of a catalyst composite and a binder, the catalyst composite comprising a proton-conductive inorganic oxide and an oxidation-reduction catalyst phase supported on the proton-conductive inorganic oxide, the proton-conductive inorganic oxide comprising a catalyst carrier selected from tin(Sn)-doped In2O3, fluorine(F)-doped SnO2, and antimony(Sb)-doped SnO2 and an oxide particle phase chemically bonded to the surface of the catalyst carrier.
    Type: Grant
    Filed: July 17, 2007
    Date of Patent: January 18, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Jun Tamura, Yoshihiko Nakano, Wu Mei, Satoshi Mikoshiba
  • Patent number: 7862932
    Abstract: Disclosed is a catalyst, including a catalyst particle containing at least one component selected from the group consisting of gold, platinum and an gold alloy, the gold alloy containing gold and at least one element selected from transition metal elements of the fourth period, fifth period and sixth period of the Periodic Table, and a catalyst carrier carrying the catalyst particle and containing a perovskite type oxide represented by general formula (1) given below: A(1-x)BxTiOy??(1) where the element A is at least one element selected from the group consisting of Ca, Sr and Ba, the element B is at least one element selected from the group consisting of La, Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb, and Lu, the molar ratio x satisfies 0<x<1, and the molar ratio y satisfies 2.7?y?3.
    Type: Grant
    Filed: April 14, 2009
    Date of Patent: January 4, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Tomoko Eguchi, Yoshihiko Nakano, Wu Mei, Taishi Fukazawa
  • Patent number: 7846862
    Abstract: A methanol oxidation catalyst is provided, which includes nanoparticles having a composition represented by the following formula 1: PtxRuyTzQu ??formula 1 In the formula 1, the T-element is at least one selected from a group consisting of Mo, W and V and the Q-element is at least one selected from a group consisting of Nb, Cr, Zr and Ti, x is 40 to 90 at. %, y is 0 to 9.9 at. %, z is 3 to 70 at. % and u is 0.5 to 40 at. %. The area of the peak derived from oxygen bond of T-element is 80% or less of the area of the peak derived from metal bond of T-element in a spectrum measured by an X-ray photoelectron spectral method.
    Type: Grant
    Filed: September 28, 2007
    Date of Patent: December 7, 2010
    Assignees: Kabushiki Kaisha Toshiba, Intematix Corporation
    Inventors: Wu Mei, Taishi Fukazawa, Itsuko Mizutani, Tsuyoshi Kobayashi, Yoshihiko Nakano, Mina Farag, Yi-Qun Li, Shinji Aoki
  • Patent number: 7838165
    Abstract: The carbon fibers of this invention is characterized in that irreducible inorganic material particles in a mean primary particle size below 500 nm and reducible inorganic material particles in a mean primary particle size below 500 nm were mixed by pulverizing and then, the mixture was heat treated under the reducing atmosphere and metal particles in a mean particle size below 1 ?m were obtained, and the mixed powder of the thus obtained metal particles with the irreducible inorganic material particles are included in the carbon fibers.
    Type: Grant
    Filed: July 2, 2004
    Date of Patent: November 23, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Seiichi Suenaga, Maki Yonetsu, Norihiro Tomimatsu, Hideyuki Oozu, Yasuhiro Goto, Yoshihiko Nakano, Shinichi Onodera
  • Patent number: 7829141
    Abstract: A supporting method for supporting a metal particle including at least two elements on a surface of a plurality of granular supports in a decompression device, the supporting method supporting the metal particle whose particle diameter being smaller than a grain size of the granular support comprises holding the plurality of granular supports in a container and rotating a stirring device and/or the container, a stirring period in which the relative position among the plurality of granular supports are changed and a non-stirring period in which the relative position among the plurality of granular supports are not changed being altered by the rotating, wherein the decompression device comprises, an evaporation source for evaporating elements to form an alloy particle, the container for holding the plurality of granular supports in the decompression device so that a relative position among granular supports is able to be changed, a rotating device for rotating the container and the stirring device disposed in t
    Type: Grant
    Filed: August 28, 2008
    Date of Patent: November 9, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Mutsuki Yamazaki, Kohei Nakayama, Yoshihiko Nakano, Wu Mei
  • Publication number: 20100239950
    Abstract: A catalyst layer-supporting substrate includes a substrate and a catalyst layer. The catalyst layer includes a catalyst material and pores. The catalyst layer is formed on the substrate. The catalyst material has a layer or wire shape. A half-value width of a main peak of the catalyst material, as determined from X-ray diffraction spectrum of the catalyst layer, is 1.5° or more. A porosity of the catalyst layer is 30% or more.
    Type: Application
    Filed: March 18, 2010
    Publication date: September 23, 2010
    Inventors: Wu MEI, Jun Tamura, Mutsuki Yamazaki, Yoshihiko Nakano
  • Patent number: 7759277
    Abstract: The present invention provides a catalyst having high activity and excellent stability, a process for preparation of the catalyst, a membrane electrode assembly, and a fuel cell. The catalyst of the present invention comprises an electronically conductive support and catalyst fine particles. The catalyst fine particles are supported on the support and are represented by the formula (1): PtuRuxGeyTz (1). In the formula, u, x, y and z mean 30 to 60 atm %, 20 to 50 atm %, 0.5 to 20 atm % and 0.5 to 40 atm %, respectively. When the element represented by T is Al, Si, Ni, W, Mo, V or C, the content of the T-element's atoms connected with oxygen bonds is not more than four times as large as that of the T-element's atoms connected with metal bonds on the basis of X-ray photoelectron spectrum (XPS) analysis.
    Type: Grant
    Filed: March 19, 2009
    Date of Patent: July 20, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Taishi Fukazawa, Wu Mei, Yoshihiko Nakano, Tsuyoshi Kobayashi, Itsuko Mizutani, Hiroyasu Sumino
  • Patent number: 7759019
    Abstract: A cathode includes a diffusion layer, and a porous catalyst layer provided on the diffusion layer. The porous catalyst layer has a thickness not greater than 60 ?m, a porosity of 30 to 70% and a pore diameter distribution including a peak in a range of 20 to 200 nm of a pore diameter. A volume of pores having a diameter of 20 to 200 nm is not less than 50% of a pore volume of the porous catalyst layer. The porous catalyst layer contains a supported catalyst comprising 10 to 30% by weight of a fibrous supported catalyst and 70 to 90% by weight of a granular supported catalyst. The fibrous supported catalyst includes a carbon nanofiber having a herringbone structure or a platelet structure. The granular supported catalyst includes a carbon black having 200 to 600 mL/100 g of a dibutyl phthalate (DBP) absorption value.
    Type: Grant
    Filed: March 9, 2006
    Date of Patent: July 20, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Wu Mei, Miho Maruyama, Jun Tamura, Yoshihiro Akasaka, Yoshihiko Nakano
  • Patent number: 7754370
    Abstract: This invention provides a fuel cell catalyst material containing catalyst particles having a composition substantially represented by ATxNu??(1) wherein A contains Pt or Pt and at least one noble metal element selected from the group consisting of Ru, Pd, Au, and Ag, T contains at least one element selected from the group consisting of Fe, Co, Ni, Sn, Mn, Cr, V, Ti, Mo, Nb, Zr, W, Ta, and Hf, and atomic ratios x and u fall within the ranges 0?x?4 and 0.005?u?1, respectively.
    Type: Grant
    Filed: August 20, 2003
    Date of Patent: July 13, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Wu Mei, Yoshihiko Nakano
  • Patent number: 7754363
    Abstract: The invention provides a method for inspecting a fuel cell that can simply inspect fuel cell characteristics. The method is an inspecting method for a direct methanol fuel cell generator comprising an anode electrode including an node catalyst layer, a cathode electrode including a cathode catalyst layer, and N pieces of cells having an electrolyte disposed between the anode electrode and the cathode electrode, for power generation by feeding an aqueous methanol solution to the anode electrode and an oxidant gas to the cathode electrode. The fuel cell generator is inspected by measuring voltage changes of the voltage V of one electromotive unit caused by generating a current density change ?I or ??I (mA/cm2) satisfying the condition of 0.2??I?5 in a finite current density I (mA/cm2) loaded on the plural electromotive units arbitrarily connected in series in the fuel cell generator under power generation during a time interval ?t (sec) satisfying the condition of 10?5??t?0.5.
    Type: Grant
    Filed: June 13, 2006
    Date of Patent: July 13, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Masahiro Takashita, Takashi Yamauchi, Yoshihiko Nakano
  • Patent number: 7727930
    Abstract: A catalyst includes a conductive carrier and catalyst particles. The catalyst particles are supported on the conductive carrier and have a composition represented by formula 1, below. An area of a peak derived from a metal bond of a T-element is 15% or more of an area of a peak derived from an oxygen bond of the T-element in a spectrum obtained by X-ray photoelectron spectroscopic method. PtxRuyTz??(1) where the T-element is at least one element selected from the group consisting of V, Nb and Hf, x is 30 to 60 at. %, y is 20 to 50 at. % and z is 5 to 50 at. %.
    Type: Grant
    Filed: April 19, 2007
    Date of Patent: June 1, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Wu Mei, Taishi Fukazawa, Takahiro Sato, Itsuko Mizutani, Tsuyoshi Kobayashi, Yoshihiko Nakano
  • Patent number: 7723260
    Abstract: A methanol oxidation catalyst is provided, which includes nanoparticles having a composition represented by the following formula (1): PtxRuyMozTu??(1) In the formula (1), the T-element is at least one selected from the group consisting of W and V, x is 20 to 80 at. %, y is 10 to 60 at. %, z is 1 to 30 at. % and u is 1 to 30 at. %. The area of the peak derived from oxygen bond of T-element is 80% or less of the area of the peak derived from metal bond of T-element in a spectrum measured by an X-ray photoelectron spectral method.
    Type: Grant
    Filed: September 28, 2007
    Date of Patent: May 25, 2010
    Assignees: Kabushiki Kaisha Toshiba, Intematix Corporation
    Inventors: Wu Mei, Taishi Fukazawa, Itsuko Mizutani, Tsuyoshi Kobayashi, Yoshihiko Nakano, Mina Farag, Yi-Qun Li, Shinji Aoki
  • Publication number: 20100047654
    Abstract: The fuel cell system of liquid fuel direct supply type includes an proton-conductive solid polymer film as an electrolyte, a cell part containing an anode and a cathode disposed to face each other with the proton-conductive solid polymer film intervening therebetween, a filter for removing metallic ions from a liquid fuel, a fuel supplying line for supplying the liquid fuel to the cell part through the filter, and an oxygen supplying line for supplying oxygen to the cell part, and the filter contains an inorganic ion exchange material.
    Type: Application
    Filed: October 30, 2009
    Publication date: February 25, 2010
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Kazuhiro YASUDA, Hideyuki Ohzu, Yoshihiko Nakano
  • Publication number: 20100021787
    Abstract: The processes include: a layer superposition step in which the step of sputtering or vapor-depositing a mixture layer including a first pore-forming metal and a catalyst metal on a substrate and the step of forming an interlayer of a second pore-forming metal or a fibrous-carbon interlayer are alternately conducted repeatedly two or more times to thereby form a multilayer structure containing mixture layers and interlayers; and a pore formation step in which after the layer superposition step, the multilayer structure is subjected to a pore formation treatment.
    Type: Application
    Filed: July 24, 2009
    Publication date: January 28, 2010
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Mei Wu, Tsuyoshi Kobayashi, Mutsuki Yamazaki, Yoshihiko Nakano
  • Publication number: 20100003566
    Abstract: The present invention aims to provide a fuel cell anode, a membrane electrode assembly and a fuel cell, so as to obtain high electric power. The fuel cell anode has an electrode catalyst layer, and the electrode catalyst layer comprises a supported catalyst comprises electrically conductive carriers and fine catalytic particles supported thereon, a proton-conductive inorganic oxide supporting SiO2 on its surface, and a proton-conductive organic polymer binder. The SiO2 supported on the inorganic oxide prevents the oxide particles from growing, to ensure the high electric power. It is necessary to control the mixing ratios among the supported catalyst, the proton-conductive oxide and the proton-conductive binder in particular ranges.
    Type: Application
    Filed: October 3, 2008
    Publication date: January 7, 2010
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Jun Tamura, Yoshihiko Nakano, Yasuhiro Goto
  • Publication number: 20090325021
    Abstract: A cathode for a fuel cell is provided, which includes an electrode catalyst layer. This electrode catalyst layer is constituted by a carried catalyst including a conductive carrier and catalytic fine particles carried on the conductive carrier, by a proton-conductive inorganic oxide containing an oxide carrier and oxide particles carried on a surface of the oxide carrier, and by a proton-conductive organic polymer binder. The carried catalyst is incorporated therein at a weight of WC. Silicon oxide is carried on the surface of the proton-conductive inorganic oxide at a weight ratio of 0.1-0.5 times as much as the weight of the proton-conductive inorganic oxide. The proton-conductive inorganic oxide is incorporated at a weight of WSA+SiO2. The weight ratio (WSA+SiO2/WC) is confined to 0.01-0.25. The proton-conductive organic polymer binder is incorporated at a weight of WP, the weigh ratio (WP/WSA+SiO2) is confined to 0.5-43.
    Type: Application
    Filed: February 17, 2009
    Publication date: December 31, 2009
    Inventors: Jun TAMURA, Yoshihiko Nakano