Patents by Inventor Yoshihiko Sakashita

Yoshihiko Sakashita has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8652370
    Abstract: A hot isostatic pressing method is disclosed wherein workpieces are accommodated within a high pressure vessel and the interior of the high pressure vessel is filled with an inert gas of a high temperature and a high pressure to treat the workpieces. The method includes a cooling step which is performed after maintaining the interior of the high pressure vessel at a high temperature and a high pressure for a predetermined time and in which a liquid inert gas is fed into the high pressure vessel. According to this method it is possible to shorten the cycle time of an HIP apparatus.
    Type: Grant
    Filed: February 5, 2007
    Date of Patent: February 18, 2014
    Assignee: Kobe Steel, Ltd.
    Inventors: Takao Fujikawa, Tomomitsu Nakai, Makoto Yoneda, Shigeo Kofune, Yoshihiko Sakashita, Masahiko Mitsuda
  • Patent number: 7520938
    Abstract: An object is subjected to high-pressure processing by bringing at least a high-pressure fluid into contact with the object under pressure in a high-pressure processing chamber, and then the high-pressure processing chamber is depressurized while the temperature in the chamber is controlled to be maintained above a temperature achieved by an adiabatic expansion, the adiabatic expansion starting from the pressure and temperature at the end of the high-pressure processing step. To control in such a way, the temperature in the high-pressure processing chamber is controlled so as to suppress or recover a temperature descent caused by an adiabatic expansion during the depressurizing step. This solves a problem in which the temperature is decreased to the vapor-liquid phase coexistence region or a region in which a solid is deposited.
    Type: Grant
    Filed: August 11, 2004
    Date of Patent: April 21, 2009
    Assignee: Kobe Steel, Ltd.
    Inventors: Yoshihiko Sakashita, Takahiko Ishii, Masahiro Yamagata, Tetsuya Yoshikawa
  • Patent number: 7384484
    Abstract: After subjected to a developing process, a rinsing process and a replacing process in this order in a developing unit 10A, 10B, a substrate W wet with an anti-drying solution is wet-transported to a supercritical drying unit 20 by a primary transport robot 30. The supercritical drying unit 20 performs a high-pressure drying process (supercritical drying process) in a dedicated manner. Accordingly, by virtue of the presence of the anti-drying solution, the substrate W is effectively prevented from becoming air-dry during the transportation of the substrate W.
    Type: Grant
    Filed: November 3, 2003
    Date of Patent: June 10, 2008
    Assignees: Dainippon Screen Mfg. Co., Ltd., Kabushiki Kaisha Kobe Seiko Sho
    Inventors: Yusuke Muraoka, Kimitsugu Saito, Tomomi Iwata, Eiji Fukatsu, Ikuo Mizobata, Hiroyuki Ueno, Yasuo Okuyama, Takashi Gama, Yoshihiko Sakashita, Katsumi Watanabe, Jun Munemasa, Hisanori Oshiba, Shogo Sarumaru
  • Publication number: 20070228596
    Abstract: A hot isostatic pressing method is disclosed wherein workpieces are accommodated within a high pressure vessel and the interior of the high pressure vessel is filled with an inert gas of a high temperature and a high pressure to treat the workpieces. The method includes a cooling step which is performed after maintaining the interior of the high pressure vessel at a high temperature and a high pressure for a predetermined time and in which a liquid inert gas is fed into the high pressure vessel. According to this method it is possible to shorten the cycle time of an HIP apparatus.
    Type: Application
    Filed: February 5, 2007
    Publication date: October 4, 2007
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventors: Takao Fujikawa, Tomomitsu Nakai, Makoto Yoneda, Shigeo Kofune, Yoshihiko Sakashita, Masahiko Mitsuda
  • Patent number: 7252719
    Abstract: A high-pressure processing apparatus includes a processing vessel including a processing chamber formed therein to perform a certain process onto an object in the processing chamber; fluid feeding means which feeds a high-pressure fluid into the processing chamber; fluid discharging means which discharges the high-pressure fluid from the processing chamber; an agitating unit which is arranged in the processing chamber and is operative to flow the high-pressure fluid over the object by relative rotation to the processing vessel; a communicating channel which is formed in the processing vessel to communicate inside and outside of the processing chamber; a rotary driving member which is coupled to the agitating unit via a shaft portion provided in the communicating channel; and a sealing portion which is provided between the shaft portion and the processing vessel to disconnect the processing chamber from the rotary driving member.
    Type: Grant
    Filed: October 14, 2005
    Date of Patent: August 7, 2007
    Assignees: Kabushiki Kaisha Kobe Seiko Sho, Dainippon Screen Mfg. Co., Ltd.
    Inventors: Yoshihiko Sakashita, Katsumi Watanabe, Hisanori Oshiba, Shogo Sarumaru, Yusuke Muraoka, Kimitsugu Saito, Ikuo Mizobata, Ryuji Kitakado
  • Patent number: 7111630
    Abstract: When the hatch of a substrate washing chamber 5 is opened to receive a substrate, certain valves are closed, and a valve is opened, supply CO2 to purge the substrate washing chamber 5 to and exclude air. When the hatch is closed, another valve is opened to vent substrate washing chamber 5 so that the CO2 expels any gas and unwanted air from the substrate washing chamber 5 and the conduits. Thereafter, super critical CO2 is used to wash the substrate and clean the circulation line. The flow of supercritical CO2 is sent to the substrate washing chamber 5. After flowing through the circulation line, including a circulation channel 11, it passes through a bypass channel 12 to a decompressor 7. Any chemicals or organic substances left in the circulation line are continuously sent to a separation/recover bath 8 together with the flow.
    Type: Grant
    Filed: June 28, 2004
    Date of Patent: September 26, 2006
    Assignees: Dainippon Screen Mfg. Co., Ltd., Kobe Steel, Ltd.
    Inventors: Ikuo Mizobata, Yusuke Muraoka, Kimitsugu Saito, Ryuji Kitakado, Yoichi Inoue, Yoshihiko Sakashita, Katsumi Watanabe, Masahiro Yamagata, Hisanori Oshiba
  • Patent number: 7080651
    Abstract: When the hatch of a substrate washing chamber 5 is opened to receive a substrate, certain valves are closed, and one valve is opened, to supply CO2 to purge the substrate washing chamber 5 to and exclude air. When the hatch is closed, another valve is opened to vent substrate washing chamber 5 so that the CO2 expels any gas and unwanted air from the substrate washing chamber 5 and the conduits. Thereafter, supercritical CO2 is used to wash the substrate and clean the circulation line. The flow of supercritical CO2 is sent to the substrate washing chamber 5. After flowing through the circulation line, including a circulation channel 11, it passes through a bypass channel 12 to a decompressor 7. Any chemicals or organic substances left in the circulation line are continuously sent to separation/recovery bath 8 together with the flow.
    Type: Grant
    Filed: May 16, 2002
    Date of Patent: July 25, 2006
    Assignees: Dainippon Screen Mfg. Co., Ltd., Kobe Steel, Ltd.
    Inventors: Ikuo Mizobata, Yusuke Muraoka, Kimitsugu Saito, Ryuji Kitakado, Yoichi Inoue, Yoshihiko Sakashita, Katsumi Watanabe, Masahiro Yamagata, Hisanori Oshiba
  • Patent number: 7000653
    Abstract: A high-pressure processing apparatus includes a processing vessel including a processing chamber formed therein to perform a certain process onto an object in the processing chamber; fluid feeding means which feeds a high-pressure fluid into the processing chamber; fluid discharging means which discharges the high-pressure fluid from the processing chamber; an agitating unit which is arranged in the processing chamber and is operative to flow the high-pressure fluid over the object by relative rotation to the processing vessel; a communicating channel which is formed in the processing vessel to communicate inside and outside of the processing chamber; a rotary driving member which is coupled to the agitating unit via a shaft portion provided in the communicating channel; and a sealing portion which is provided between the shaft portion and the processing vessel to disconnect the processing chamber from the rotary driving member.
    Type: Grant
    Filed: April 19, 2004
    Date of Patent: February 21, 2006
    Assignees: Kabushiki Kaisha Kobe Seiko Sho, Dainippon Screen Mfg. Co., Ltd.
    Inventors: Yoshihiko Sakashita, Katsumi Watanabe, Hisanori Oshiba, Shogo Sarumaru, Yusuke Muraoka, Kimitsugu Saito, Ikuo Mizobata, Ryuji Kitakado
  • Publication number: 20060032520
    Abstract: A high-pressure processing apparatus includes a processing vessel including a processing chamber formed therein to perform a certain process onto an object in the processing chamber; fluid feeding means which feeds a high-pressure fluid into the processing chamber; fluid discharging means which discharges the high-pressure fluid from the processing chamber; an agitating unit which is arranged in the processing chamber and is operative to flow the high-pressure fluid over the object by relative rotation to the processing vessel; a communicating channel which is formed in the processing vessel to communicate inside and outside of the processing chamber; a rotary driving member which is coupled to the agitating unit via a shaft portion provided in the communicating channel; and a sealing portion which is provided between the shaft portion and the processing vessel to disconnect the processing chamber from the rotary driving member.
    Type: Application
    Filed: October 14, 2005
    Publication date: February 16, 2006
    Applicants: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd), DAINIPPON SCREEN MFG. CO., LTD.
    Inventors: Yoshihiko Sakashita, Katsumi Watanabe, Hisanori Oshiba, Shogo Sarumaru, Yusuke Muraoka, Kimitsugu Saito, Ikuo Mizobata, Ryuji Kitakado
  • Patent number: 6874513
    Abstract: A high-pressure processing apparatus for removing unnecessary matters on objects to be processed by bringing a high-pressure fluid and a chemical liquid other than the high-pressure fluid into contact with the objects to be processed in a pressurized state is provided with a plurality of high-pressure processing chambers, a common high-pressure fluid supply unit for supplying the high-pressure fluid to each one of the high-pressure processing chambers, a common chemical liquid supply unit for supplying the chemical liquid to the each high-pressure processing chambers, and a separating unit for separating gaseous components from a mixture of the high-pressure fluid and the chemical liquid discharged from the high-pressure processing chambers after the objects are processed. Thus, a high-pressure processing apparatus which has such a compact construction as to be partly installable in a clean room and can stably perform a high-pressure processing can be provided.
    Type: Grant
    Filed: April 17, 2002
    Date of Patent: April 5, 2005
    Assignees: Kabushiki Kaisha Kobe Seiko Sho, Dainippon Screen Mfg. Co., Ltd.
    Inventors: Masahiro Yamagata, Hisanori Oshiba, Yoshihiko Sakashita, Yoichi Inoue, Yusuke Muraoka, Kimitsugu Saito, Ikuo Mizobata, Ryuji Kitakado
  • Publication number: 20050051194
    Abstract: An object is subjected to high-pressure processing by bringing at least a high-pressure fluid into contact with the object under pressure in a high-pressure processing chamber, and then the high-pressure processing chamber is depressurized while the temperature in the chamber is controlled to be maintained above a temperature achieved by an adiabatic expansion, the adiabatic expansion starting from the pressure and temperature at the end of the high-pressure processing step. To control in such a way, the temperature in the high-pressure processing chamber is controlled so as to suppress or recover a temperature descent caused by an adiabatic expansion during the depressurizing step. This solves a problem in which the temperature is decreased to the vapor-liquid phase coexistence region or a region in which a solid is deposited.
    Type: Application
    Filed: August 11, 2004
    Publication date: March 10, 2005
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventors: Yoshihiko Sakashita, Takahiko Ishii, Masahiro Yamagata, Tetsuya Yoshikawa
  • Patent number: 6823880
    Abstract: A high-pressure processing apparatus includes a processing vessel including a processing chamber formed therein to perform a certain process onto an object in the processing chamber; fluid feeding means which feeds a high-pressure fluid into the processing chamber; fluid discharging means which discharges the high-pressure fluid from the processing chamber; an agitating unit which is arranged in the processing chamber and is operative to flow the high-pressure fluid over the object by relative rotation to the processing vessel; a communicating channel which is formed in the processing vessel to communicate inside and outside of the processing chamber; a rotary driving member which is coupled to the agitating unit via a shaft portion provided in the communicating channel; and a sealing portion which is provided between the shaft portion and the processing vessel to disconnect the processing chamber from the rotary driving member.
    Type: Grant
    Filed: April 25, 2002
    Date of Patent: November 30, 2004
    Assignees: Kabushiki Kaisha Kobe Seiko Sho, Dainippon Screen Mfg. Co., Ltd.
    Inventors: Yoshihiko Sakashita, Katsumi Watanabe, Masahiro Yamagata, Hisanori Oshiba, Shogo Sarumaru, Yusuke Muraoka, Kimitsugu Saito, Ikuo Mizobata, Ryuji Kitakado
  • Publication number: 20040231698
    Abstract: When the hatch of a substrate washing chamber 5 is opened to receive a substrate, certain valves are closed, and a valve is opened, supply CO2 to purge the substrate washing chamber 5 to and exclude air. When the hatch is closed, another valve is opened to vent substrate washing chamber so that the CO2 expels any gas and unwanted air from the substrate washing chamber 5 and the conduits. Thereafter, super critical CO2 is used to wash the substrate and clean the circulation line. The flow of supercritical CO2 is sent to the substrate washing chamber 5. After flowing through the circulation line, including a circulation channel 11, it passes through a bypass channel 12 to a decompressor 7. Any chemicals or organic substances left in the circulation line are continuously sent to a separation/recover bath 8 together with the flow.
    Type: Application
    Filed: June 28, 2004
    Publication date: November 25, 2004
    Applicants: Dainippon Screen Mfg. Co., Ltd., Kobe Steel, Ltd.
    Inventors: Ikuo Mizobata, Yusuke Muraoka, Kimitsugu Saito, Ryuji Kitakado, Yoichi Inoue, Yoshihiko Sakashita, Katsumi Watanabe, Masahiro Yamagata, Hisanori Oshiba
  • Publication number: 20040194884
    Abstract: A compact high-pressure process apparatus is provided, which ensures an easy loading of a material to be process to a process chamber, as well as a high reliable operation and a high productivity. For this purpose, an opening 9 is disposed in a pressure vessel 7 including a process chamber 4, and a lid member 10 for closing the opening 9 may be pressed there against by means of a press apparatus 15. In this case, a moving mechanism for moving the lid member 10 relative to the opening 9 in the direction parallel to a contact surface of the lid menber 10 and the pressure vessel 7 is further provided.
    Type: Application
    Filed: April 27, 2004
    Publication date: October 7, 2004
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd)
    Inventors: Yoshihiko Sakashita, Katsumi Watanabe, Yoichi Inoue, Hideshi Yamane
  • Publication number: 20040194842
    Abstract: A high-pressure processing apparatus includes a processing vessel including a processing chamber formed therein to perform a certain process onto an object in the processing chamber; fluid feeding means which feeds a high-pressure fluid into the processing chamber; fluid discharging means which discharges the high-pressure fluid from the processing chamber; an agitating unit which is arranged in the processing chamber and is operative to flow the high-pressure fluid over the object by relative rotation to the processing vessel; a communicating channel which is formed in the processing vessel to communicate inside and outside of the processing chamber; a rotary driving member which is coupled to the agitating unit via a shaft portion provided in the communicating channel; and a sealing portion which is provided between the shaft portion: and the processing vessel to disconnect the processing chamber from the rotary driving member.
    Type: Application
    Filed: April 19, 2004
    Publication date: October 7, 2004
    Applicants: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd), DAINIPPON SCREEN MFG. CO., LTD.
    Inventors: Yoshihiko Sakashita, Katsumi Watanabe, Hisanori Oshiba, Shogo Sarumaru, Yusuke Muraoka, Kimitsugu Saito, Ikuo Mizobata, Ryuji Kitakado
  • Publication number: 20040105936
    Abstract: After subjected to a developing process, a rinsing process and a replacing process in this order in a developing unit 10A, 10B, a substrate W wet with an anti-drying solution is wet-transported to a supercritical drying unit 20 by a primary transport robot 30. The supercritical drying unit 20 performs a high-pressure drying process (supercritical drying process) in a dedicated manner. Accordingly, by virtue of the presence of the anti-drying solution, the substrate W is effectively prevented from becoming air-dry during the transportation of the substrate W.
    Type: Application
    Filed: November 3, 2003
    Publication date: June 3, 2004
    Applicant: Dainippon Screen Mfg. Co. Ltd.
    Inventors: Yusuke Muraoka, Kimitsugu Saito, Tomomi Iwata, Eiji Fukatsu, Ikuo Mizobata, Hiroyuki Ueno, Yasuo Okuyama, Takashi Gama, Yoshihiko Sakashita, Katsumi Watanabe, Jun Munemasa, Hisanori Oshiba, Shogo Sarumaru
  • Patent number: 6733592
    Abstract: The present invention has an object to obtain a small-size, high-temperature and high-pressure treatment device adapted to treat semiconductor wafers. The high-temperature and high-pressure device of the invention is intended to treat semiconductor wafers in an atmosphere of high-temperature and high-pressure gas, and comprises a pressure vessel having at a lower portion thereof an opening for putting the semiconductor wafers in and out, a lower lid disposed so as to be vertically movable for opening and closing the lower opening, wafer transfer means for stacking and unstacking the semiconductor wafers onto and from the lower lid, and a heater attached to the lower lid for heating the semiconductor wafers.
    Type: Grant
    Filed: May 13, 2002
    Date of Patent: May 11, 2004
    Assignee: Kobe Steel, Ltd.
    Inventors: Takao Fujikawa, Yoichi Inoue, Yutaka Narukawa, Takahiko Ishii, Tsuneharu Masuda, Makoto Kadoguchi, Yoshihiko Sakashita
  • Patent number: 6712081
    Abstract: A pressure processing device including a vessel having a body and an opening/closing member. A seal member is provided on a joining surface between the body and the opening/closing member, and a non-sliding joining surface is provided which is not slidably moved when the member is opened and closed. A device is provided including a diaphragm for housing an object to be processed, and a fluid introducing passage to the vessel provided so that a greater part of a fluid flowing into the vessel flows into the diaphragm. The diaphragm can be formed of heat insulating material, and a filter can be provided for removing particles installed on the side of the diaphragm into which a fluid flows. A plate having a labyrinth construction can be provided for trapping particles by parts on a surface thereof. A pressure processing device in which an object may be washed is also provided.
    Type: Grant
    Filed: August 30, 2000
    Date of Patent: March 30, 2004
    Assignee: Kobe Steel, Ltd.
    Inventors: Katsuhiro Uehara, Yoshihiko Sakashita, Takeshi Kanda, Takeo Nishimoto
  • Patent number: 6703316
    Abstract: A method and system for processing a substrate includes performing a wet process by supplying a working liquid to a substrate in a wet processing apparatus, transferring the substrate in a non-dry state from the wet processing apparatus to a drying apparatus, and subjecting the substrate to a supercritical drying by a supercritical fluid in the drying apparatus.
    Type: Grant
    Filed: April 26, 2002
    Date of Patent: March 9, 2004
    Assignees: Kabushiki Kaisha Kobe Seiko Sho, Dainippon Screen Mfg. Co., Ltd.
    Inventors: Yoichi Inoue, Yoshihiko Sakashita, Katsumi Watanabe, Nobuyuki Kawakami, Takahiko Ishii, Yusuke Muraoka, Kimitsugu Saito, Tomomi Iwata, Ikuo Mizobata, Takashi Miyake, Ryuji Kitakado
  • Publication number: 20040031441
    Abstract: A processing fluid is not only supplied toward a surface side of a substrate (W) from supply nozzles (13, 13), but also flow directions (R1, R1) of the processing fluid supplied from the respective supply nozzles 13 deviate from each other within the surface of the substrate (W). Therefore, a whirling flow (TF) of the processing fluid is formed over the surface of the substrate (W) and the processing fluid comes into contact with the surface of the substrate (W), thereby performing a predetermined surface treatment (e.g. cleaning, first rinsing, second rinsing and drying).
    Type: Application
    Filed: March 14, 2003
    Publication date: February 19, 2004
    Inventors: Yusuke Muraoka, Takashi Miyake, Kimitsugu Saito, Takahiko Ishii, Yoshihiko Sakashita, Katsumi Watanabe