Patents by Inventor Yoshihiko Yamamura

Yoshihiko Yamamura has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8609059
    Abstract: To provide a production method for a nitride crystal, where a nitride crystal can be prevented from precipitating in a portion other than on a seed crystal and the production efficiency of a gallium nitride single crystal grown on the seed crystal can be enhanced. In a method for producing a nitride crystal by an ammonothermal method in a vessel containing a mineralizer-containing solution, out of the surfaces of said vessel and a member provided in said vessel, at least a part of the portion coming into contact with said solution is constituted by a metal or alloy containing one or more atoms selected from the group consisting of tantalum (Ta), tungsten (W) and titanium (Ti), and has a surface roughness (Ra) of less than 1.80 ?m.
    Type: Grant
    Filed: May 29, 2012
    Date of Patent: December 17, 2013
    Assignees: Mitsubishi Chemical Corporation, Tohoku University, The Japan Steel Works, Ltd.
    Inventors: Yutaka Mikawa, Makiko Kiyomi, Yuji Kagamitani, Toru Ishiguro, Yoshihiko Yamamura
  • Patent number: 8414828
    Abstract: A material is presented that exhibits excellent corrosion resistance to supercritical ammonia and is suitable for a supercritical ammonia reactor. An Ni-based corrosion resistant alloy includes from 15% or more to 50% or less by mass of Cr and any one or both of Mo and W, wherein a [(content of Mo)+0.5×(content of W)] is from 1.5% or more to 8.5% or less by mass, a value of 1.8×[% content of Cr]/{[% content of Mo]+0.5×[% content of W]} is from 3.0 or more to 70.0 or less and the balance is Ni and an unavoidable impurity. The alloy may be used to configure a supercritical ammonia reactor or the material is coated on a surface that contacts with a supercritical ammonia fluid. The alloy exhibits excellent corrosion resistance to supercritical ammonia and a mineralizer added the supercritical ammonia. The safety and reliability of an apparatus can be improved, the producing cost can be reduced, the apparatus lifetime can be extended and the running cost can be reduced.
    Type: Grant
    Filed: August 22, 2006
    Date of Patent: April 9, 2013
    Assignees: Furuya Metal Co., Ltd., Mitsubishi Chemical Corporation, Tokyo Denpa Co., Ltd., Tsuguo Fukuda, The Japan Steel Works, Ltd.
    Inventors: Yoshihiko Yamamura, Shinya Sato, Shinichi Nishiya
  • Publication number: 20120237431
    Abstract: To provide a production method for a nitride crystal, where a nitride crystal can be prevented from precipitating in a portion other than on a seed crystal and the production efficiency of a gallium nitride single crystal grown on the seed crystal can be enhanced. In a method for producing a nitride crystal by an ammonothermal method in a vessel containing a mineralizer-containing solution, out of the surfaces of said vessel and a member provided in said vessel, at least a part of the portion coming into contact with said solution is constituted by a metal or alloy containing one or more atoms selected from the group consisting of tantalum (Ta), tungsten (W) and titanium (Ti), and has a surface roughness (Ra) of less than 1.80 ?m.
    Type: Application
    Filed: May 29, 2012
    Publication date: September 20, 2012
    Applicants: MITSUBISHI CHEMICAL CORPORATION, THE JAPAN STEEL WORKS, LTD., TOHOKU UNIVERSITY
    Inventors: YUTAKA MIKAWA, MAKIKO KIYOMI, YUJI KAGAMITANI, TORU ISHIGURO, YOSHIHIKO YAMAMURA
  • Publication number: 20110236789
    Abstract: A novel electrode that can be used at high temperature in air, a fuel cell using the material, and a method of manufacture of the same are provided. The electrode material containing a component expressed by La1-sAsNi1-x-y-zCuxFeyBzO3-? (wherein, A and B are at least one element independently selected from the group consisting of alkaline earth metals, transition metals excluding Fe, Ni and Cu, and rare earths excluding La, and x>0, y>0, x+y+z<1, 0?s?0.05, and 0?z?0.05) exhibits relatively high conductivity at high temperature, and has the advantage of combination with other materials in relation to coefficient of thermal expansion.
    Type: Application
    Filed: March 24, 2011
    Publication date: September 29, 2011
    Applicant: NGK Insulators, Ltd.
    Inventors: Masaharu NAMBA, Naomi Teratani, Yoshihiko Yamamura, Kazuyuki Matsuda, Naomi Fukui
  • Publication number: 20110053002
    Abstract: The present invention provides a ceramic material capable of demonstrating compactness and Li ion conductivity to an extent that enables the use of the ceramic material as a solid-state electrolyte material for a lithium secondary battery, or the like. A ceramic material containing Li, La, Zr, Nb and/or Ta, as well as O and having a garnet-type or garnet-like crystal structure is used.
    Type: Application
    Filed: September 1, 2010
    Publication date: March 3, 2011
    Applicant: NGK Insulators, Ltd.
    Inventors: Yoshihiko Yamamura, Tatsuya Hattori, Toshihiro Yoshida, Akihiko Honda, Yosuke Sato
  • Publication number: 20090293805
    Abstract: It is provided a melt composition for growing a gallium nitride single crystal by flux method. The melt composition contains gallium, sodium and barium, and a content of barium is 0.05 to 0.3 mol % with respect to 100 mol % of sodium.
    Type: Application
    Filed: August 3, 2009
    Publication date: December 3, 2009
    Applicants: NGK Insulators, Ltd., Osaka University, Toyoda Gosei Co., Ltd.
    Inventors: Makoto Iwai, Takanao Shimodaira, Yoshihiko Yamamura, Takatomo Sasaki, Yusuke Mori, Fumio Kawamura, Shiro Yamasaki
  • Publication number: 20090280024
    Abstract: The invention intends to provide a material that exhibits excellent corrosion resistance to supercritical ammonia and is suitable for a supercritical ammonia reactor. An Ni-based corrosion resistant alloy includes from 15% or more to 50% or less by mass of Cr and any one or both of Mo and W, wherein a [(content of Mo)+0.5×(content of W)] is from 1.5% or more to 8.5% or less by mass, a value of 1.8×[% content of Cr]/{[% content of Mo]+0.5×[% content of W]} is from 3.0 or more to 70.0 or less and the balance is Ni and an unavoidable impurity. Preferably, content of Fe is less than 3% by mass, and content of C is less than 0.05% by mass. The alloy is used to configure a supercritical ammonia reactor or the material is coated on a surface that contacts with a supercritical ammonia fluid. The alloy exhibits excellent corrosion resistance to supercritical ammonia and a mineralizer added the supercritical ammonia.
    Type: Application
    Filed: August 22, 2006
    Publication date: November 12, 2009
    Applicant: Solvolthermal Crystal Growth Technology Research Alliance
    Inventors: Yoshihiko Yamamura, Shinya Sato, Shinichi Nishiya
  • Publication number: 20090013926
    Abstract: An object of the present invention is to manufacture single crystals of high quality on an industrial production scale by preventing impurities from being mixed in single crystals when the single crystals are produced by the solvothermal method. A pressure vessel body 1, in which a supercritical state is maintained, is made of heat resistant alloy, a portion of the pressure vessel body is open, a corrosion-resistant mechanical lining 5 is provided on an inner face of the pressure vessel and on an entire outer circumferential edge of the opening, and the opening is sealed by an airtight mating face formed out of a corrosion-resistant mechanical lining, which is formed on the outer circumferential edge of the opening, and by an airtight mating face of the corrosion-resistant mechanical lining cover 6 on an inner face of the cover 3 through a corrosion-resistant gasket member.
    Type: Application
    Filed: January 11, 2006
    Publication date: January 15, 2009
    Applicant: SOLVOTHERMAL CRYSTAL GROWTH TECHNOLOGY RESEARCH ALLIANCE
    Inventors: Yuji Sasagawa, Osamu Wakao, Yoshihiko Yamamura, Shigeharu Akatsuka, Keiichiro Matsushita
  • Publication number: 20060289483
    Abstract: An inductive heating roller device, in which support rods fixed in an inductive heating mechanism are inserted into the drive shafts of a roller and are supported on the inner faces of the drive shafts through bearings so that the inductive heating mechanism is held in a floating manner. Elastic members 14 are arranged between the outer faces of the support rods 7A and 7B and the inner faces of the drive shafts 3A and 3B so that the support rods 7A and 7B are supported on the inner faces of the drive shafts 3A and 3B through the elastic members 14 and the bearings 10A and 10B.
    Type: Application
    Filed: June 8, 2006
    Publication date: December 28, 2006
    Inventors: Yoshio Kitano, Kozo Okamoto, Yoshihiko Yamamura
  • Patent number: 7063908
    Abstract: A complex oxide and an oxide-ion conductor made of the complex oxide are provided. The complex oxide has a basic composition of (Sm1-xAx)(Al1-yBy)O3, wherein “A” represents at least one element selected from the group consisting of barium, strontium and calcium, “B” represents an element selected from the group consisting of magnesium, iron and cobalt, x is a value in a range of 0.10 to 0.30, and y is a value in a range of 0 to 0.30.
    Type: Grant
    Filed: September 26, 2002
    Date of Patent: June 20, 2006
    Assignee: NGK Insulators, Ltd.
    Inventors: Yoshihiko Yamamura, Kazuyuki Kaigawa, Shinji Kawasaki, Hiroaki Sakai
  • Publication number: 20040106032
    Abstract: Conductive polymer films are formed on the surfaces of a substrate made of a metal material by, preferably, electrolytic polymerization. Alternatively, passive-state layers are formed on the surfaces of a substrate and conductive polymer films are formed on the passive-state layers. It is desirable to form groove-like gas flow passages by bending the substrate before the execution of electrolytic polymerization or the formation of passive-state layers. In the electrolytic polymerization, it is desirable that electrolysis be performed by using the substrate as an electrolytic polymerization electrode. Therefore, a metal separator having conductive polymer coatings that are superior in contact resistance and corrosion resistance can be obtained. The manufacturing cost of a polymer electrolyte fuel cell can be reduced.
    Type: Application
    Filed: August 19, 2003
    Publication date: June 3, 2004
    Applicant: THE JAPAN STEEL WORKS, LTD.
    Inventors: Hirokazu Uejima, Yoshihiko Yamamura, Shinichi Nishiya, Takashi Shibata
  • Publication number: 20030068553
    Abstract: An object of the present invention is to provide a novel complex oxide applicable as an oxide-ion conductor. The complex oxide according to the present invention has a basic composition of (Sm1-xAX)(Al1-yBy)O3. In the formula, “A” represents one or more element selected from the group consisting of barium, strontium and calcium; “B” represents an element selected from the group consisting of magnesium, iron and cobalt; x=0.10 to 0.30; and y=0 to 0.30.
    Type: Application
    Filed: September 26, 2002
    Publication date: April 10, 2003
    Applicant: NGK Insulators, Ltd.
    Inventors: Yoshihiko Yamamura, Kazuyuki Kaigawa, Shinji Kawasaki, Hiroaki Sakai
  • Patent number: 6373035
    Abstract: A relay box is fastened to the end of a support rod supporting an induction heating mechanism, which the end is extended outside. Receptacles of connectors are mounted on a surface of the relay box. Lead wires connected to the induction coils are connected to the receptacles. Plugs are removably pin-connected to the receptacles. Power lines connecting to the exciting power source are connected to the plugs.
    Type: Grant
    Filed: June 20, 2001
    Date of Patent: April 16, 2002
    Assignee: Tokuden Co., Ltd.
    Inventors: Kozo Okamoto, Yoshihiko Yamamura
  • Publication number: 20020020698
    Abstract: A relay box is fastened to the end of a support rod supporting an induction heating mechanism, which the end is extended outside. Receptacles of connectors are mounted on a surface of the relay box. Lead wires connected to the induction coils are connected to the receptacles. Plugs are removably pin-connected to the receptacles. Power lines connecting to the exciting power source are connected to the plugs.
    Type: Application
    Filed: June 20, 2001
    Publication date: February 21, 2002
    Applicant: TOKUDEN CO., LTD.
    Inventors: Kozo Okamoto, Yoshihiko Yamamura