Patents by Inventor Yoshihiro Arashitani

Yoshihiro Arashitani has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11914205
    Abstract: The present invention satisfies at least one of the condition of the degree of freedom of a primary layer 11 shown in the equation (I) and the condition of the rigidity of a secondary layer 12 shown in the equation (II). Thus, a coated optical fiber 1 capable of suppressing transmission loss in a low temperature environment is provided, in which, even when an optical fiber 10 having a large effective core cross-sectional area Aeff of the optical fiber 10 at a wavelength of 1550 nm and having high microbend sensitivity is used, transmission loss in a low temperature environment can be suppressed. [Math.
    Type: Grant
    Filed: August 23, 2022
    Date of Patent: February 27, 2024
    Assignee: FURUKAWA ELECTRIC CO., LTD.
    Inventors: Minoru Kasahara, Yoshihiro Arashitani, Kouji Mochiduki, Masahiro Yabe
  • Patent number: 11846407
    Abstract: A bare optical fiber manufacturing method includes applying an ultraviolet curable resin applied around an optical fiber; and irradiating the ultraviolet curable resin with ultraviolet light emitted from semiconductor ultraviolet light emitting elements, by use of an ultraviolet irradiation device having plural ultraviolet irradiation units each having plural positions where the ultraviolet light is emitted toward the ultraviolet curable resin, the plural positions being arranged on the same circle, the plural ultraviolet irradiation units being arranged in a traveling direction of the optical fiber such that the optical fiber passes centers of the circles, at least two of the plural ultraviolet irradiation units being differently arranged with respect to circumferential direction angles thereof around an axis that is the traveling direction of the optical fiber.
    Type: Grant
    Filed: May 19, 2021
    Date of Patent: December 19, 2023
    Assignee: FURUKAWA ELECTRIC CO., LTD.
    Inventors: Zyunpei Watanabe, Hiroki Tanaka, Kenichi Suyama, Yoshihiro Arashitani
  • Publication number: 20230204853
    Abstract: A multicore fiber includes: a plurality of first glass regions each including: a core portion; and a first cladding portion having a lower refractive index than a maximum refractive index of the core portion; and a cladding region formed on outer peripheries of the plurality of first glass regions, wherein compressive stress is applied to the plurality of first glass regions.
    Type: Application
    Filed: March 6, 2023
    Publication date: June 29, 2023
    Applicant: FURUKAWA ELECTRIC CO., LTD.
    Inventors: Masanori TAKAHASHI, Koichi MAEDA, Ryuichi SUGIZAKI, Yoshihiro ARASHITANI
  • Publication number: 20220397732
    Abstract: The present invention satisfies at least one of the condition of the degree of freedom of a primary layer 11 shown in the equation (I) and the condition of the rigidity of a secondary layer 12 shown in the equation (II). Thus, a coated optical fiber 1 capable of suppressing transmission loss in a low temperature environment is provided, in which, even when an optical fiber 10 having a large effective core cross-sectional area Aeff of the optical fiber 10 at a wavelength of 1550 nm and having high microbend sensitivity is used, transmission loss in a low temperature environment can be suppressed. [Math.
    Type: Application
    Filed: August 23, 2022
    Publication date: December 15, 2022
    Applicant: FURUKAWA ELECTRIC CO., LTD.
    Inventors: Minoru KASAHARA, Yoshihiro ARASHITANI, Kouji MOCHIDUKI, Masahiro YABE
  • Patent number: 11435518
    Abstract: Provided is a coated optical fiber and an optical fiber cable capable of suppressing transmission loss (microbend loss) even in an optical fiber having high microbend sensitivity. In the present invention, the degree of freedom of a primary layer 11 represented by the equation (I) and the rigidity of a secondary layer 12 represented by the equation (II) are set in specific ranges, respectively. Thus, the present invention provides a coated optical fiber 1 capable of suppressing the transmission loss even when an optical fiber 10 having high microbend sensitivity such as a BI fiber having a large effective core cross-sectional area Aeff of an optical fiber is used. The present invention can be widely used as a coated optical fiber 1 constituting a coated optical fiber ribbon or as a coated optical fiber 1 housed in an optical fiber cable. Further, an optical fiber cable including such coated optical fibers 1 enjoys the effect of the above-described coated optical fiber 1. [Math.
    Type: Grant
    Filed: March 12, 2021
    Date of Patent: September 6, 2022
    Assignee: FURUKAWA ELECTRIC CO. LTD.
    Inventors: Minoru Kasahara, Yoshihiro Arashitani, Kouji Mochiduki, Masahiro Yabe
  • Publication number: 20210270448
    Abstract: A bare optical fiber manufacturing method includes applying an ultraviolet curable resin applied around an optical fiber; and irradiating the ultraviolet curable resin with ultraviolet light emitted from semiconductor ultraviolet light emitting elements, by use of an ultraviolet irradiation device having plural ultraviolet irradiation units each having plural positions where the ultraviolet light is emitted toward the ultraviolet curable resin, the plural positions being arranged on the same circle, the plural ultraviolet irradiation units being arranged in a traveling direction of the optical fiber such that the optical fiber passes centers of the circles, at least two of the plural ultraviolet irradiation units being differently arranged with respect to circumferential direction angles thereof around an axis that is the traveling direction of the optical fiber.
    Type: Application
    Filed: May 19, 2021
    Publication date: September 2, 2021
    Applicant: FURUKAWA ELECTRIC CO., LTD.
    Inventors: Zyunpei WATANABE, Hiroki TANAKA, Kenichi SUYAMA, Yoshihiro ARASHITANI
  • Patent number: 11105992
    Abstract: Provided is an optical fiber ribbon and an optical fiber cable, which are adaptable to manufacture at a high velocity, in the intermittent connecting type optical fiber ribbon obtained by adhering and connecting adjacent colored optical fibers by intermittent connecting portions. In an optical fiber ribbon 2 of the present invention, since, in addition to polyol having a weight average molecular weight in a specific range, rheology control agent is contained in a specific range in a material forming an intermittent connecting portion 3, the Newtonian region between a low shear rate region and a high shear rate region of the material forming the intermittent connecting portion 3 can be adjusted. Thus, scattering of the material due to a centrifugal force generated by rotation of an application roll that applies the material at the time of manufacture and the like can be suppressed, and the application amount to colored optical fiber 1 can be stabilized.
    Type: Grant
    Filed: September 8, 2020
    Date of Patent: August 31, 2021
    Assignee: FURUKAWA ELECTRIC CO., LTD.
    Inventors: Hiroki Tanaka, Kenji Yokomizo, Tomohiro Ishimura, Hirotaka Watanabe, Yoshihiro Arashitani
  • Patent number: 11073258
    Abstract: A bare optical fiber manufacturing method includes applying an ultraviolet curable resin applied around an optical fiber; and irradiating the ultraviolet curable resin with ultraviolet light emitted from semiconductor ultraviolet light emitting elements, by use of an ultraviolet irradiation device having plural ultraviolet irradiation units each having plural positions where the ultraviolet light is emitted toward the ultraviolet curable resin, the plural positions being arranged on the same circle, the plural ultraviolet irradiation units being arranged in a traveling direction of the optical fiber such that the optical fiber passes centers of the circles, at least two of the plural ultraviolet irradiation units being differently arranged with respect to circumferential direction angles thereof around an axis that is the traveling direction of the optical fiber.
    Type: Grant
    Filed: June 7, 2018
    Date of Patent: July 27, 2021
    Assignee: FURUKAWA ELECTRIC CO., LTD.
    Inventors: Zyunpei Watanabe, Hiroki Tanaka, Kenichi Suyama, Yoshihiro Arashitani
  • Publication number: 20210199883
    Abstract: Provided is a coated optical fiber and an optical fiber cable capable of suppressing transmission loss (microbend loss) even in an optical fiber having high microbend sensitivity. In the present invention, the degree of freedom of a primary layer 11 represented by the equation (I) and the rigidity of a secondary layer 12 represented by the equation (II) are set in specific ranges, respectively. Thus, the present invention provides a coated optical fiber 1 capable of suppressing the transmission loss even when an optical fiber 10 having high microbend sensitivity such as a BI fiber having a large effective core cross-sectional area Aeff of an optical fiber is used. The present invention can be widely used as a coated optical fiber 1 constituting a coated optical fiber ribbon or as a coated optical fiber 1 housed in an optical fiber cable. Further, an optical fiber cable including such coated optical fibers 1 enjoys the effect of the above-described coated optical fiber 1. [Math.
    Type: Application
    Filed: March 12, 2021
    Publication date: July 1, 2021
    Applicant: FURUKAWA ELECTRIC CO. LTD.
    Inventors: Minoru KASAHARA, Yoshihiro ARASHITANI, Kouji MOCHIDUKI, Masahiro YABE
  • Patent number: 11036024
    Abstract: A method for manufacturing an intermittent bonding type optical fiber ribbon which is capable of forming non-connection portions and intermittent connection portions between adjacent coated optical fibers formed into an optical fiber ribbon by performing a laser processing for the ribbon through irradiation with a pulse laser light, thereby making it possible to rapidly form the intermittent connection portions and the non-connection portions while maintaining high linear velocity of the coated optical fiber. The non-connection portions and the intermittent connection portions are formed in the obtained intermittent bonding type optical fiber ribbon through the irradiation with the pulse laser light, so the intermittent bonding type optical fiber ribbon becomes the intermittent bonding type optical fiber ribbon, which is capable of securing operability during collective connection and surely being subjected to an intermediate branching without damaging cable characteristics during high density mounting.
    Type: Grant
    Filed: May 31, 2019
    Date of Patent: June 15, 2021
    Assignee: FURUKAWA ELECTRIC CO., LTD.
    Inventors: Hiroki Tanaka, Kenji Yokomizo, Tomohiro Ishimura, Yutaka Hoshino, Masaki Iwama, Eisuke Otani, Shunichi Matsushita, Yoshihiro Arashitani, Takeshi Yagi
  • Patent number: 10882783
    Abstract: An optical fiber ribbon is intermittently connected in a length direction by an intermittent connection which includes a polyol having a weight-average molecular weight of 3000 to 4000 in a specific amount relative to the entire intermittent connection and which has Young's modulus at 23° C. within a specific range. When collectively unitizing optical fiber ribbons to form an optical fiber cable, an optical fiber ribbon is formed which maintains advantages of the optical fiber ribbon and which prevents cracks of the intermittent connection and detachment of the intermittent connection from a colored optical fiber core when the cable is subjected to repetitive ironing.
    Type: Grant
    Filed: June 1, 2018
    Date of Patent: January 5, 2021
    Assignee: FURUKAWA ELECTRIC CO., LTD.
    Inventors: Hiroki Tanaka, Yutaka Hoshino, Hirotaka Watanabe, Yoshihiro Arashitani, Kenji Yokomizo, Tomohiro Ishimura
  • Publication number: 20200400903
    Abstract: Provided is an optical fiber ribbon and an optical fiber cable, which are adaptable to manufacture at a high velocity, in the intermittent connecting type optical fiber ribbon obtained by adhering and connecting adjacent colored optical fibers by intermittent connecting portions. In an optical fiber ribbon 2 of the present invention, since, in addition to polyol having a weight average molecular weight in a specific range, rheology control agent is contained in a specific range in a material forming an intermittent connecting portion 3, the Newtonian region between a low shear rate region and a high shear rate region of the material forming the intermittent connecting portion 3 can be adjusted. Thus, scattering of the material due to a centrifugal force generated by rotation of an application roll that applies the material at the time of manufacture and the like can be suppressed, and the application amount to colored optical fiber 1 can be stabilized.
    Type: Application
    Filed: September 8, 2020
    Publication date: December 24, 2020
    Applicant: FURUKAWA ELECTRIC CO., LTD.
    Inventors: Hiroki TANAKA, Kenji YOKOMIZO, Tomohiro ISHIMURA, Hirotaka WATANABE, Yoshihiro ARASHITANI
  • Publication number: 20200400904
    Abstract: Provided is an optical fiber ribbon and an optical fiber cable, which are adaptable to manufacture at a high velocity, in the intermittent connecting type optical fiber ribbon obtained by adhering and connecting adjacent colored optical fibers by intermittent connecting portions. In an optical fiber ribbon 2 of the present invention, since, in addition to polyol having a weight average molecular weight in a specific range, cellulose nanofiber is contained in a specific range in a material forming an intermittent connecting portion 3, the Newtonian region between a low shear rate region and a high shear rate region of the material forming the intermittent connecting portion 3 can be adjusted. Thus, scattering of the material due to a centrifugal force generated by rotation of an application roll that applies the material at the time of manufacture and the like can be suppressed, and the application amount to colored optical fiber 1 can be stabilized.
    Type: Application
    Filed: September 8, 2020
    Publication date: December 24, 2020
    Applicant: FURUKAWA ELECTRIC CO., LTD.
    Inventors: Hiroki TANAKA, Kenichi SUYAMA, Takeshi YAGI, Yoshihiro ARASHITANI
  • Patent number: 10793470
    Abstract: An optical fiber including a glass core, and a polymer cladding formed around the glass core, the polymer cladding containing a mixture of a polymerizable composition and a silane coupling agent, and a fluorine-based ultraviolet curable resin. The mixture contains 5 to 95 parts by weight of the silane coupling agent based on 100 parts by weight of the total weight of the mixture. The fluorine-based ultraviolet curable resin alone has a refractive index in a range of 1.350 to 1.420 after ultraviolet curing. A component originated from the silane coupling agent is concentrated within a range of 20 ?m or less in the polymer cladding from an interface between the glass core and the polymer cladding.
    Type: Grant
    Filed: July 15, 2015
    Date of Patent: October 6, 2020
    Assignee: FURUKAWA ELECTRIC CO., LTD.
    Inventors: Takeshi Saito, Kenichi Suyama, Yoshihiro Arashitani
  • Patent number: 10773998
    Abstract: A method of manufacturing an optical fiber wire includes applying ultraviolet curable resin onto the outer periphery of a traveling optical fiber, cooling the ultraviolet curable resin applied to the optical fiber using first cooled inert gas, and curing the ultraviolet curable resin by radiating ultraviolet rays on the ultraviolet curable resin that is cooled by the first cooled inert gas through an ultraviolet transparent tube.
    Type: Grant
    Filed: August 7, 2018
    Date of Patent: September 15, 2020
    Assignee: FURUKAWA ELECTRIC CO., LTD.
    Inventors: Kenichi Suyama, Yoshihiro Arashitani, Zyunpei Watanabe
  • Publication number: 20200181417
    Abstract: Provided are a coating material for an optical fiber that can improve interface adhesion between a glass optical fiber and a coating layer and can easily coat a glass optical fiber, and a coated optical fiber including the coating material and a manufacturing method thereof. The coating material for an optical fiber includes an ultraviolet curable resin; a silane coupling agent; at least one of a photoacid generator that generates an acid by light irradiation and a thermal acid generator that generates an acid by heat; and a compound including an epoxy group. A coated optical fiber has a glass optical fiber and a coating layer that coats the glass optical fiber, and at least one layer forming the coating layer is formed of the coating material for an optical fiber.
    Type: Application
    Filed: February 12, 2020
    Publication date: June 11, 2020
    Applicant: FURUKAWA ELECTRIC CO., LTD.
    Inventors: Kenichi SUYAMA, Yoshihiro Arashitani
  • Publication number: 20190285823
    Abstract: A method for manufacturing an intermittent bonding type optical fiber ribbon which is capable of forming non-connection portions and intermittent connection portions between adjacent coated optical fibers formed into an optical fiber ribbon by performing a laser processing for the ribbon through irradiation with a pulse laser light, thereby making it possible to rapidly form the intermittent connection portions and the non-connection portions while maintaining high linear velocity of the coated optical fiber. The non-connection portions and the intermittent connection portions are formed in the obtained intermittent bonding type optical fiber ribbon through the irradiation with the pulse laser light, so the intermittent bonding type optical fiber ribbon becomes the intermittent bonding type optical fiber ribbon, which is capable of securing operability during collective connection and surely being subjected to an intermediate branching without damaging cable characteristics during high density mounting.
    Type: Application
    Filed: May 31, 2019
    Publication date: September 19, 2019
    Applicant: Furukawa Electric Co., Ltd.
    Inventors: Hiroki TANAKA, Kenji YOKOMIZO, Tomohiro ISHIMURA, Yutaka HOSHINO, Masaki IWAMA, Eisuke OTANI, Shunichi MATSUSHITA, Yoshihiro ARASHITANI, Takeshi YAGI
  • Publication number: 20180339941
    Abstract: A method of manufacturing an optical fiber wire includes applying ultraviolet curable resin onto the outer periphery of a traveling optical fiber, cooling the ultraviolet curable resin applied to the optical fiber using first cooled inert gas, and curing the ultraviolet curable resin by radiating ultraviolet rays on the ultraviolet curable resin that is cooled by the first cooled inert gas through an ultraviolet transparent tube.
    Type: Application
    Filed: August 7, 2018
    Publication date: November 29, 2018
    Applicant: FURUKAWA ELECTRIC CO., LTD.
    Inventors: Kenichi SUYAMA, Yoshihiro ARASHITANI, Zyunpei WATANABE
  • Publication number: 20180282209
    Abstract: A bare optical fiber manufacturing method includes applying an ultraviolet curable resin applied around an optical fiber; and irradiating the ultraviolet curable resin with ultraviolet light emitted from semiconductor ultraviolet light emitting elements, by use of an ultraviolet irradiation device having plural ultraviolet irradiation units each having plural positions where the ultraviolet light is emitted toward the ultraviolet curable resin, the plural positions being arranged on the same circle, the plural ultraviolet irradiation units being arranged in a traveling direction of the optical fiber such that the optical fiber passes centers of the circles, at least two of the plural ultraviolet irradiation units being differently arranged with respect to circumferential direction angles thereof around an axis that is the traveling direction of the optical fiber.
    Type: Application
    Filed: June 7, 2018
    Publication date: October 4, 2018
    Applicant: FURUKAWA ELECTRIC CO., LTD.
    Inventors: Zyunpei WATANABE, Hiroki TANAKA, Kenichi SUYAMA, Yoshihiro ARASHITANI
  • Publication number: 20180273427
    Abstract: An optical fiber ribbon is intermittently connected in a length direction by an intermittent connection which includes a polyol having a weight-average molecular weight of 3000 to 4000 in a specific amount relative to the entire intermittent connection and which has Young's modulus at 23° C. within a specific range. When collectively unitizing optical fiber ribbons to form an optical fiber cable, an optical fiber ribbon is formed which maintains advantages of the optical fiber ribbon and which prevents cracks of the intermittent connection and detachment of the intermittent connection from a colored optical fiber core when the cable is subjected to repetitive ironing.
    Type: Application
    Filed: June 1, 2018
    Publication date: September 27, 2018
    Applicant: Furukawa Electric Co., Ltd.
    Inventors: Hiroki TANAKA, Yutaka HOSHINO, Hirotaka WATANABE, Yoshihiro ARASHITANI, Kenji YOKOMIZO, Tomohiro ISHIMURA