Patents by Inventor Yoshihiro Kameyama

Yoshihiro Kameyama has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9435016
    Abstract: The Cu—Ni—Si-based copper alloy plate contains 1.0 mass % to 3.0 mass % of Ni, and Si at a concentration of ? to ¼ of the mass % concentration of Ni with a remainder of Cu and inevitable impurities, in which, when the average value of the aspect ratio (the minor axis of crystal grains/the major axis of crystal grains) of each crystal grains in an alloy structure is 0.4 to 0.6, the average value of GOS in the all crystal grains is 1.2° to 1.5°, and the ratio (L?/L) of the total special grain boundary length L? of special grain boundaries to the total grain boundary length L of crystal grain boundaries is 60% to 70%, the spring bending elastic limit becomes 450 N/mm2 to 600 N/mm2, the solder resistance to heat separation is favorable and deep drawing workability is excellent at 150° C. for 1000 hours.
    Type: Grant
    Filed: July 7, 2010
    Date of Patent: September 6, 2016
    Assignee: Mitsubishi Shindoh Co., Ltd.
    Inventors: Takeshi Sakurai, Yoshio Abe, Akira Saito, Yoshihiro Kameyama
  • Patent number: 9255310
    Abstract: A copper alloy material includes, by mass %, Mg of 0.3 to 2%, P of 0.001 to 0.1%, and the balance including Cu and inevitable impurities. An area fraction of such crystal grains that an average misorientation between all the pixels in each crystal grain is less than 4° is 45 to 55% of a measured area, when orientations of all the pixels in the measured area of the surface of the copper alloy material are measured by an EBSD method with a scanning electron microscope of an electron backscattered diffraction image system and a boundary in which a misorientation between adjacent pixels is 5° or more is considered as a crystal grain boundary, and a tensile strength is 641 to 708 N/mm2, and a bending elastic limit value is 472 to 503 N/mm2.
    Type: Grant
    Filed: June 4, 2010
    Date of Patent: February 9, 2016
    Assignee: Mitsubishi Shindoh Co., Ltd.
    Inventors: Takeshi Sakurai, Yoshihiro Kameyama, Yoshio Abe
  • Publication number: 20130167988
    Abstract: The Cu—Ni—Si-based copper alloy plate contains 1.0 mass % to 3.0 mass % of Ni, and Si at a concentration of ? to ¼ of the mass % concentration of Ni with a remainder of Cu and inevitable impurities, in which, when the average value of the aspect ratio (the minor axis of crystal grains/the major axis of crystal grains) of each crystal grains in an alloy structure is 0.4 to 0.6, the average value of GOS in the all crystal grains is 1.2° to 1.5°, and the ratio (L?/L) of the total special grain boundary length L? of special grain boundaries to the total grain boundary length L of crystal grain boundaries is 60% to 70%, the spring bending elastic limit becomes 450 N/mm2 to 600 N/mm2, the solder resistance to heat separation is favorable and deep drawing workability is excellent at 150° C. for 1000 hours.
    Type: Application
    Filed: July 7, 2010
    Publication date: July 4, 2013
    Applicant: MITSUBISHI SHINDOH CO., LTD.
    Inventors: Takeshi Sakurai, Yoshio Abe, Akira Saito, Yoshihiro Kameyama
  • Publication number: 20110146855
    Abstract: A copper alloy material includes, by mass %, Mg of 0.3 to 2%, P of 0.001 to 0.1%, and the balance including Cu and inevitable impurities. An area fraction of such crystal grains that an average misorientation between all the pixels in each crystal grain is less than 4° is 45 to 55% of a measured area, when orientations of all the pixels in the measured area of the surface of the copper alloy material are measured by an EBSD method with a scanning electron microscope of an electron backscattered diffraction image system and a boundary in which a misorientation between adjacent pixels is 5° or more is considered as a crystal grain boundary, and a tensile strength is 641 to 708 N/mm2, and a bending elastic limit value is 472 to 503 N/mm2.
    Type: Application
    Filed: June 4, 2010
    Publication date: June 23, 2011
    Applicant: Mitsubishi Shindoh Co., Ltd.
    Inventors: Takeshi Sakurai, Yoshihiro Kameyama, Yoshio Abe