Patents by Inventor Yoshihiro Nakagaki

Yoshihiro Nakagaki has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220013429
    Abstract: A semiconductor device includes: a semiconductor element; a submount on which the semiconductor element is mounted, wherein the submount has a first surface on which the semiconductor element is mounted, a second surface located on a side opposite the first surface, and a lateral surface located between the first surface and the second surface, and wherein the submount comprises: a groove located at the second surface, a heat dissipation portion located at the second surface, and an electrode pattern located at the first surface; a package substrate on which the submount is mounted; a first joint member that physically joins the heat dissipation portion to the package substrate; and a connection portion located on the side surface, wherein the connection portion electrically connects the electrode pattern and the package substrate, and the connection portion comprises a second joint member.
    Type: Application
    Filed: July 6, 2021
    Publication date: January 13, 2022
    Applicant: NICHIA CORPORATION
    Inventors: Tadaaki MIYATA, Yoshihiro KIMURA, Masatoshi NAKAGAKI
  • Patent number: 11201354
    Abstract: An electrolytic solution contains: an electrolyte including a lithium salt represented by general formula (1) below; an organic solvent including a linear carbonate represented by general formula (2) below; and an unsaturated cyclic carbonate, wherein the linear carbonate is contained at a mole ratio of 3 to 6 relative to the lithium salt, and/or the lithium salt is contained at a concentration of 1.1 to 3.8 mol/L.
    Type: Grant
    Filed: April 14, 2017
    Date of Patent: December 14, 2021
    Assignee: KABUSHIKI KAISHA TOYOTA JIDOSHOKKI
    Inventors: Hiroyuki Sasaki, Tomoyuki Kawai, Yoshihiro Nakagaki, Ryota Okamoto, Kensuke Yotsumoto, Atsushi Minagata, Yuki Sugimoto, Yuuhi Sato
  • Patent number: 11011781
    Abstract: An electrolytic solution of a nonaqueous electrolyte secondary battery contains a metal salt, and an organic solvent having a heteroatom and satisfies Is>Io, when an intensity of an original peak of the solvent is represented as Io and an intensity of a peak resulting from shifting of the original peak is represented as Is. For the negative electrode, (1) a graphite whose G/D ratio of G-band and D-band peaks in a Raman spectrum is not lower than 3.5; (2) a carbon material whose crystallite size, calculated from a half width of a peak appearing at 2?=20 degrees to 30 degrees in a X-ray diffraction profile is not larger than 20 nm; (3) silicon element and/or tin element; (4) a metal oxide configured to occlude and release lithium ions; or (5) a graphite whose ratio (long axis/short axis) is 1 to 5.
    Type: Grant
    Filed: September 25, 2014
    Date of Patent: May 18, 2021
    Assignees: THE UNIVERSITY OF TOKYO, KABUSHIKI KAISHA TOYOTA JIDOSHOKKI
    Inventors: Atsuo Yamada, Yuki Yamada, Yoshihiro Nakagaki, Tomoyuki Kawai, Yuki Hasegawa, Kohei Mase, Nobuhiro Goda
  • Patent number: 10797350
    Abstract: A method for producing a secondary battery including: an electrolytic solution containing a metal salt whose cation is an alkali metal, an alkaline earth metal, or aluminum and whose anion has a chemical structure represented by general formula (1) below, and a linear carbonate represented by general formula (2) below; a negative electrode; a positive electrode; and a coating on a surface of the negative electrode and/or the positive electrode, the coating containing S, O, and C, the method including forming the coating by performing a specific activation process on a secondary battery including the electrolytic solution, the negative electrode, and the positive electrode, (R1X1)(R2SO2)N??general formula (1), R20OCOOR21??general formula (2).
    Type: Grant
    Filed: October 5, 2016
    Date of Patent: October 6, 2020
    Assignee: KABUSHIKI KAISHA TOYOTA JIDOSHOKKI
    Inventors: Hiroyuki Sasaki, Tomoyuki Kawai, Yoshihiro Nakagaki, Hitoshi Aikiyo, Takeshi Maki
  • Patent number: 10686223
    Abstract: To provide a nonaqueous electrolyte secondary battery that suppresses elution of Al from a positive electrode current collector formed of aluminum or an aluminum alloy, and is superior in thermal characteristics and input-output characteristics. Provided is a nonaqueous electrolyte secondary battery including a positive electrode, a negative electrode, and an electrolytic solution. The positive electrode has a positive electrode current collector formed of aluminum or an aluminum alloy. The electrolytic solution contains a metal salt and an organic solvent having a heteroelement. Regarding an intensity of a peak derived from the organic solvent in a vibrational spectroscopy spectrum of the electrolytic solution, Is>Io is satisfied when an intensity of an original peak of the organic solvent is represented as Io and an intensity of a peak resulting from shifting of the original peak is represented as Is.
    Type: Grant
    Filed: September 25, 2014
    Date of Patent: June 16, 2020
    Assignees: KABUSHIKI KAISHA TOYOTA JIDOSHOKKI, THE UNIVERSITY OF TOKYO
    Inventors: Atsuo Yamada, Yuki Yamada, Kohei Mase, Tomoyuki Kawai, Yoshihiro Nakagaki, Yuki Hasegawa, Nobuhiro Goda
  • Patent number: 10497980
    Abstract: An electrolytic solution containing a heteroelement-containing organic solvent at a mole ratio of 3-5 relative to a metal salt, the heteroelement-containing organic solvent containing a specific organic solvent having a relative permittivity of not greater than 10 and/or a dipole moment of not greater than 5D, the metal salt being a metal salt whose cation is an alkali metal, an alkaline earth metal, or aluminum and whose anion has a chemical structure represented by general formula (1) below: (R1X1)(R2SO2)N??general formula (1).
    Type: Grant
    Filed: October 5, 2015
    Date of Patent: December 3, 2019
    Assignees: UNIVERSITY OF TOKYO, KABUSHIKI KAISHA TOYOTA JIDOSHOKKI
    Inventors: Tomoyuki Kawai, Yoshihiro Nakagaki, Hiroyuki Sasaki, Yuki Hasegawa, Kohei Mase, Hitoshi Aikiyo, Toshiya Arakawa, Atsuo Yamada, Yuki Yamada
  • Patent number: 10347944
    Abstract: An electrolytic solution containing a heteroelement-containing organic solvent at a mole ratio of 3-5 relative to a metal salt, the heteroelement-containing organic solvent containing a specific organic solvent having a relative permittivity of not greater than 10 and/or a dipole moment of not greater than 5D, the metal salt being a metal salt whose cation is an alkali metal, an alkaline earth metal, or aluminum and whose anion has a chemical structure represented by general formula (1) below: (R1X1)(R2SO2)N??general formula (1).
    Type: Grant
    Filed: October 5, 2015
    Date of Patent: July 9, 2019
    Assignees: UNIVERSITY OF TOKYO, KABUSHIKI KAISHA TOYOTA JIDOSHOKKI
    Inventors: Tomoyuki Kawai, Yoshihiro Nakagaki, Hiroyuki Sasaki, Yuki Hasegawa, Kohei Mase, Hitoshi Aikiyo, Toshiya Arakawa, Atsuo Yamada, Yuki Yamada
  • Publication number: 20190131658
    Abstract: An electrolytic solution contains: an electrolyte including a lithium salt represented by general formula (1) below; an organic solvent including a linear carbonate represented by general formula (2) below; and an unsaturated cyclic carbonate, wherein the linear carbonate is contained at a mole ratio of 3 to 6 relative to the lithium salt, and/or the lithium salt is contained at a concentration of 1.1 to 3.8 mol/L.
    Type: Application
    Filed: April 14, 2017
    Publication date: May 2, 2019
    Applicant: THE UNIVERSITY OF TOKYO
    Inventors: Hiroyuki SASAKI, Tomoyuki KAWAI, Yoshihiro NAKAGAKI, Ryota OKAMOTO, Kensuke YOTSUMOTO, Atsushi MINAGATA, Yuki SUGIMOTO, Yuuhi SATO
  • Publication number: 20190123389
    Abstract: A lithium ion secondary battery having long life is provided. A lithium ion secondary battery includes: an electrolytic solution containing (FSO2)2NLi and a linear carbonate represented by general formula (A) below; and a negative electrode having a negative electrode active material, wherein materials having a long diameter of 30 nm or greater exist on a surface of the negative electrode active material in a range of not less than 0 counts/?m2 and less than 80 counts/?m2, R20OCOOR21 ??general formula (A) (R20 and R21 are each independently selected from CnHaFbClcBrdIe that is a linear alkyl, or CmHfFgClhBriIj that includes a cyclic alkyl in the chemical structure thereof. “n” is an integer not smaller than 1, “m” is an integer not smaller than 3, and “a”, “b”, “c”, “d”, “e”, “f ”, “g”, “h”, “i”, and “j” are each independently an integer not smaller than 0, and satisfy 2n+1=a+b+c+d+e and 2m?1=f+g+h+i+j.).
    Type: Application
    Filed: March 28, 2017
    Publication date: April 25, 2019
    Applicant: THE UNIVERSITY OF TOKYO
    Inventors: Yoshihiro NAKAGAKI, Tomoyuki KAWAI, Hiroyuki SASAKI
  • Patent number: 10230100
    Abstract: A negative-electrode active material is used for a negative electrode, the negative-electrode active material including: agglomerated particles including nanometer-size silicon produced by heat treating a lamellar polysilane having a structure in which multiple six-membered rings constituted of a silicon atom are disposed one after another, and expressed by a compositional formula, (SiH)n; and a carbon layer including amorphous carbon, and covering at least some of the agglomerated particles to be composited therewith. An electric storage apparatus including the same is not only able to reduce the irreversible capacity, but also able to inhibit the generation of “SEI.
    Type: Grant
    Filed: December 25, 2013
    Date of Patent: March 12, 2019
    Assignee: KABUSHIKI KAISHA TOYOTA JIDOSHOKKI
    Inventors: Yusuke Sugiyama, Masataka Nakanishi, Nobuhiro Goda, Tomohiro Niimi, Masakazu Murase, Takeshi Kondo, Shigenori Koishi, Hiroshi Hirate, Yoshihiro Nakagaki, Mutsumi Takahashi
  • Publication number: 20180287208
    Abstract: A method for producing a secondary battery including: an electrolytic solution containing a metal salt whose cation is an alkali metal, an alkaline earth metal, or aluminum and whose anion has a chemical structure represented by general formula (1) below, and a linear carbonate represented by general formula (2) below; a negative electrode; a positive electrode; and a coating on a surface of the negative electrode and/or the positive electrode, the coating containing S, O, and C, the method including forming the coating by performing a specific activation process on a secondary battery including the electrolytic solution, the negative electrode, and the positive electrode, (R1X1)(R2SO2)N??general formula (1), R20OCOOR21??general formula (2).
    Type: Application
    Filed: October 5, 2016
    Publication date: October 4, 2018
    Applicant: The University of Tokyo
    Inventors: Hiroyuki SASAKI, Tomoyuki KAWAI, Yoshihiro NAKAGAKI, Hitoshi AIKIYO, Takeshi MAKI
  • Publication number: 20180277852
    Abstract: An object is to provide a nonaqueous electrolyte secondary battery that has an SEI coating with a special structure and has excellent battery characteristics. As an electrolytic solution of the nonaqueous electrolyte secondary battery, an electrolytic solution containing: a salt whose cation is an alkali metal, an alkaline earth metal, or aluminum and whose cation is an alkali metal, an alkaline earth metal, or aluminum; and an organic solvent having a heteroelement is used, wherein, Is>Io is satisfied, and an S,O-containing coating having an S?O structure is formed on the surface of a positive electrode and/or a negative electrode. Alternatively, the above described electrolytic solution is used, and, as a binding agent for negative electrodes, a binding agent formed of a polymer having a hydrophilic group is used.
    Type: Application
    Filed: May 31, 2018
    Publication date: September 27, 2018
    Applicant: THE UNIVERSITY OF TOKYO
    Inventors: Atsuo YAMADA, Yuki YAMADA, Yoshihiro NAKAGAKI, Tomoyuki KAWAI, Kohei MASE, Yuki HASEGAWA, Manabu MIYOSHI, Nobuhiro GODA, Hiroyuki SASAKI, Takefumi FUKUMOTO
  • Patent number: 9935310
    Abstract: Providing a silicon-containing material having a novel structure being distinct from the structure of conventional silicon oxide disproportionated to use. A silicon-containing material according to the present invention includes at least the following: a continuous phase including silicon with Si—Si bond, and possessing a bubble-shaped skeleton being continuous three-dimensionally; and a dispersion phase including silicon with Si—O bond, and involved in an area demarcated by said continuous phase to be in a dispersed state.
    Type: Grant
    Filed: June 25, 2013
    Date of Patent: April 3, 2018
    Assignee: KABUSHIKI KAISHA TOYOTA JIDOSHOKKI
    Inventors: Yoshihiro Nakagaki, Nobuhiro Goda, Manabu Miyoshi, Yushi Kondo, Kensuke Yotsumoto
  • Publication number: 20170352920
    Abstract: An electrolytic solution containing a heteroelement-containing organic solvent at a mole ratio of 3-5 relative to a metal salt, the heteroelement-containing organic solvent containing a specific organic solvent having a relative permittivity of not greater than 10 and/or a dipole moment of not greater than 5D, the metal salt being a metal salt whose cation is an alkali metal, an alkaline earth metal, or aluminum and whose anion has a chemical structure represented by general formula (1) below: (R1X1)(R2SO2)N??general formula (1).
    Type: Application
    Filed: October 5, 2015
    Publication date: December 7, 2017
    Applicant: THE UNIVERSITY OF TOKYO
    Inventors: Tomoyuki KAWAI, Yoshihiro NAKAGAKI, Hiroyuki SASAKI, Yuki HASEGAWA, Kohei MASE, Hitoshi AIKIYO, Toshiya ARAKAWA, Atsuo YAMADA, Yuki YAMADA
  • Patent number: 9527748
    Abstract: A nanometer-size silicon material produced by heat treating a lamellar polysilane exhibits Raman-shift peaks existing at 341±10 cm?1, 360±10 cm?1, 498±10 cm?1, 638±10 cm?1, and 734±10 cm?1 in a Raman spectrum, has a large specific surface area, and has a reduced SiO content.
    Type: Grant
    Filed: November 18, 2013
    Date of Patent: December 27, 2016
    Assignee: KABUSHIKI KAISHA TOYOTA JIDOSHOKKI
    Inventors: Yusuke Sugiyama, Masataka Nakanishi, Takashi Mori, Masakazu Murase, Tomohiro Niimi, Yoshihiro Nakagaki, Shigenori Koishi, Hiroshi Hirate
  • Publication number: 20160240858
    Abstract: An object is to provide a nonaqueous electrolyte secondary battery that has an SEI coating with a special structure and has excellent battery characteristics. As an electrolytic solution of the nonaqueous electrolyte secondary battery, an electrolytic solution containing: a salt whose cation is an alkali metal, an alkaline earth metal, or aluminum and whose cation is an alkali metal, an alkaline earth metal, or aluminum; and an organic solvent having a heteroelement is used, wherein, Is>Io is satisfied, and an S,O-containing coating having an S?O structure is formed on the surface of a positive electrode and/or a negative electrode. Alternatively, the above described electrolytic solution is used, and, as a binding agent for negative electrodes, a binding agent formed of a polymer having a hydrophilic group is used.
    Type: Application
    Filed: September 25, 2014
    Publication date: August 18, 2016
    Applicant: THE UNIVERSITY OF TOKYO
    Inventors: Atsuo YAMADA, Yuki YAMADA, Yoshihiro NAKAGAKI, Tomoyuki KAWAI, Kohei MASE, Yuki HASEGAWA, Manabu MIYOSHI, Nobuhiro GODA, Hiroyuki SASAKI, Takefumi FUKUMOTO
  • Publication number: 20160233548
    Abstract: To provide a nonaqueous electrolyte secondary battery that suppresses elution of Al from a positive electrode current collector formed of aluminum or an aluminum alloy, and is superior in thermal characteristics and input-output characteristics. Provided is a nonaqueous electrolyte secondary battery including a positive electrode, a negative electrode, and an electrolytic solution. The positive electrode has a positive electrode current collector formed of aluminum or an aluminum alloy. The electrolytic solution contains a metal salt and an organic solvent having a heteroelement. Regarding an intensity of a peak derived from the organic solvent in a vibrational spectroscopy spectrum of the electrolytic solution, Is>Io is satisfied when an intensity of an original peak of the organic solvent is represented as Io and an intensity of a peak resulting from shifting of the original peak is represented as Is.
    Type: Application
    Filed: September 25, 2014
    Publication date: August 11, 2016
    Applicant: THE UNIVERSITY OF TOKYO
    Inventors: Atsuo YAMADA, Yuki YAMADA, Kohei MASE, Tomoyuki KAWAI, Yoshihiro NAKAGAKI, Yuki HASEGAWA, Nobuhiro GODA
  • Publication number: 20160226100
    Abstract: To improve battery characteristics by an optimum combination of an electrolytic solution and a negative electrode active material. An electrolytic solution of a nonaqueous electrolyte secondary battery contains a metal salt, and an organic solvent having a heteroatom and satisfying, regarding an intensity of a peak derived from the organic solvent in a vibrational spectroscopy spectrum, Is>Io, when an intensity of an original peak of the organic solvent is represented as Io and an intensity of a peak resulting from shifting of the original peak is represented as Is. As a negative electrode, any of the following (1) to (5) is used: (1) a graphite whose G/D ratio, which is a ratio of G-band and D-band peaks in a Raman spectrum, is not lower than 3.
    Type: Application
    Filed: September 25, 2014
    Publication date: August 4, 2016
    Applicant: THE UNIVERSITY OF TOKYO
    Inventors: Atsuo YAMADA, Yuki YAMADA, Yoshihiro NAKAGAKI, Tomoyuki KAWAI, Yuki HASEGAWA, Kohei MASE, Nobuhiro GODA
  • Publication number: 20160218390
    Abstract: A positive electrode of a nonaqueous secondary battery has a positive electrode active material including at least one selected from lithium metal complex oxides having a layered rock salt structure, lithium metal complex oxides having a spinel structure, and polyanion based materials. The electrolytic solution contains a metal salt whose cation is an alkali metal, an alkaline earth metal, or aluminum, and an organic solvent having a heteroelement. Regarding an intensity of a peak derived from the organic solvent in a vibrational spectroscopy spectrum of the electrolytic solution, when an intensity of an original peak of the organic solvent is represented as Io and an intensity of a peak resulting from shifting of the original peak is represented as Is; Is>Io is satisfied. The nonaqueous secondary battery may have a usage maximum potential of the positive electrode of not lower than 4.5 V when Li/Li+ is used for reference potential.
    Type: Application
    Filed: September 25, 2014
    Publication date: July 28, 2016
    Applicant: THE UNIVERSITY OF TOKYO
    Inventors: Atsuo YAMADA, Yuki YAMADA, Tomoyuki KAWAI, Yoshihiro NAKAGAKI, Kohei MASE, Yuki HASEGAWA, Nobuhiro GODA
  • Publication number: 20160218394
    Abstract: Provided is an electrolytic solution in which a metal salt and a solvent exist in a new state. The electrolytic solution of the present invention is an electrolytic solution containing a salt whose cation is an alkali metal, an alkaline earth metal, or aluminum, and an organic solvent having a heteroelement. Regarding an intensity of a peak derived from the organic solvent in a vibrational spectroscopy spectrum of the electrolytic solution, Is>Io is satisfied when an intensity of an original peak of the organic solvent is represented as Io and an intensity of a peak resulting from shifting of the original peak is represented as Is.
    Type: Application
    Filed: September 25, 2014
    Publication date: July 28, 2016
    Applicant: THE UNIVERSITY OF TOKYO
    Inventors: Atsuo YAMADA, Yuki YAMADA, Tomoyuki KAWAI, Yuki HASEGAWA, Yoshihiro NAKAGAKI, Kohei MASE, Manabu MIYOSHI, Junichi NIWA, Nobuhiro GODA