Patents by Inventor Yoshihiro Takei

Yoshihiro Takei has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240113042
    Abstract: A microelectronic device including an isolation device. The isolation device includes a lower isolation element, an upper isolation element, and an inorganic dielectric plateau between the lower isolation element and the upper isolation element. The inorganic dielectric plateau contains an upper etch stop layer and a lower etch stop layer between the upper isolation element and the lower isolation element. The upper etch stop layer provides an end point signal during the plateau etch process which provides feedback on the amount of inorganic dielectric plateau which has been etched. The lower etch stop layer provides a traditional etch stop function to provide for a complete plateau etch and protection of an underlying metal bond pad. The inorganic dielectric plateau also contains alternating layers of high stress and low stress silicon dioxide, which provide a means of reinforcement of the inorganic dielectric plateau.
    Type: Application
    Filed: September 30, 2022
    Publication date: April 4, 2024
    Inventors: Jeffrey Alan West, Thomas Dyer Bonifield, Toshiyuki Tamura, Yoshihiro Takei
  • Publication number: 20240113095
    Abstract: A microelectronic device including an isolation device with a stabilized dielectric. The isolation device includes a lower isolation element, an upper isolation element, and an inorganic dielectric plateau between the lower isolation element and the upper isolation element. The dielectric sidewall of the inorganic dielectric plateau is stabilized in a nitrogen containing plasma which forms a SiOxNy surface on the dielectric sidewall of the inorganic dielectric plateau. The SiOxNy surface on the dielectric sidewall of the inorganic dielectric plateau reduces ingress of moisture into the dielectric stack of the inorganic dielectric plateau.
    Type: Application
    Filed: December 17, 2022
    Publication date: April 4, 2024
    Inventors: Yoshihiro Takei, Mitsuhiro Sugimoto, Byron Lovell Williams, Jeffrey Alan West
  • Publication number: 20240113096
    Abstract: A microelectronic device includes a lower isolation element and an upper isolation element, separated by an isolation dielectric layer stack. The microelectronic device includes a lower field reduction layer over the lower isolation element, under the isolation dielectric layer stack. The lower field reduction layer includes a first dielectric layer adjacent to the isolation dielectric layer stack, and a second dielectric layer over the first dielectric layer. A dielectric constant of the first dielectric layer is greater than a dielectric constant of the second dielectric layer. The dielectric constant of the second dielectric layer is greater than a dielectric constant of the isolation dielectric layer stack adjacent to the lower field reduction layer. Methods of forming example microelectronic device having lower field reduction layers are disclosed.
    Type: Application
    Filed: December 31, 2022
    Publication date: April 4, 2024
    Inventors: Jeffrey Alan West, Yoshihiro Takei, Mitsuhiro Sugimoto
  • Patent number: 10998278
    Abstract: A microelectronic device contains a high voltage component having an upper plate and a lower plate. The upper plate is isolated from the lower plate by a main dielectric between the upper plate and low voltage elements at a surface of the substrate of the microelectronic device. A lower-bandgap dielectric layer is disposed between the upper plate and the main dielectric. The lower-bandgap dielectric layer contains at least one sub-layer of silicon nitride having a refractive index between 2.11 and 2.23. The lower-bandgap dielectric layer extends beyond the upper plate continuously around the upper plate. The lower-bandgap dielectric layer has an isolation break surrounding the upper plate at a distance of at least twice the thickness of the lower-bandgap dielectric layer from the upper plate.
    Type: Grant
    Filed: March 27, 2020
    Date of Patent: May 4, 2021
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Jeffrey Alan West, Thomas Dyer Bonifield, Yoshihiro Takei, Mitsuhiro Sugimoto
  • Publication number: 20200312794
    Abstract: A microelectronic device contains a high voltage component having an upper plate and a lower plate. The upper plate is isolated from the lower plate by a main dielectric between the upper plate and low voltage elements at a surface of the substrate of the microelectronic device. A lower-bandgap dielectric layer is disposed between the upper plate and the main dielectric. The lower-bandgap dielectric layer contains at least one sub-layer of silicon nitride having a refractive index between 2.11 and 2.23. The lower-bandgap dielectric layer extends beyond the upper plate continuously around the upper plate. The lower-bandgap dielectric layer has an isolation break surrounding the upper plate at a distance of at least twice the thickness of the lower-bandgap dielectric layer from the upper plate.
    Type: Application
    Filed: March 27, 2020
    Publication date: October 1, 2020
    Inventors: Jeffrey Alan West, Thomas Dyer Bonifield, Yoshihiro Takei, Mitsuhiro Sugimoto
  • Patent number: 8863642
    Abstract: This invention relates to a feedback control device for controlling the stroke of an actuator stroke driven by a working fluid. The feedback control device for controlling the stroke correctly controls the stroke using a simple means by compensating secular changes in the flow rate control valve that controls the working fluid. The device for controlling the stroke of an actuator 110 is provided with a single flow rate control valve 1 for controlling the feed and discharge of the working fluid, and the flow rate control valve is operated to control the stroke by feedback. The flow rate control valve 1 has a neutral position where the working fluid is neither fed nor discharged, and a flow rate control valve control device 9 is provided with a learning device 91 for learning variations in the neutral position. The feedback control is executed, i.e.
    Type: Grant
    Filed: September 16, 2009
    Date of Patent: October 21, 2014
    Assignee: Isuzu Motors Limited
    Inventors: Yoshihiro Takei, Yasushi Yamamoto, Hiroyuki Kawanishi
  • Patent number: 8678151
    Abstract: A clutch control device for controlling a clutch installed between an engine and a transmission in a power transmission device for a vehicle includes a clutch actuator driven by a working fluid, a stroke sensor for detecting a movement of the clutch actuator, a flow rate control valve for controlling an amount of the working fluid in the clutch actuator, and a flow rate control valve control device for controlling a position of a valve body of the flow rate control valve responsive to a detection signal from the stroke sensor.
    Type: Grant
    Filed: September 16, 2009
    Date of Patent: March 25, 2014
    Assignee: Isuzu Motors Limited
    Inventors: Yoshihiro Takei, Yasushi Yamamoto, Hiroyuki Kawanishi
  • Patent number: 8505301
    Abstract: A steam engine in which a liquid and a steam are jetted so that a rotor is turned by the reaction thereof, and the rotor having a well-balanced simple structure. In the steam engine, the rotor 5 having a plurality of bent flow paths 53A to 53D arranged at regular intervals therein is rotatably supported in a closed container 1 filled with the liquid being fitted onto a boss portion 11 of the closed container 1. The boss portion 11 is alternately forming slide-contact portions 11A having a steam feed port and recessed portions 11B. The steam fed into the bent flow path 53 from the steam feed port causes the liquid in the flow path to be jetted outward to rotate the rotor 5. The rotor 5 is of a point-symmetrical shape in cross section free of unbalanced weight, has no moving part, and is simple in structure. When the bent flow path 53 communicates with the recessed portion 11B, the steam remaining in the flow path is cooled and disappears, and the flow path is filled with the liquid.
    Type: Grant
    Filed: December 18, 2008
    Date of Patent: August 13, 2013
    Assignee: Isuzu Motors Limited
    Inventors: Yasushi Yamamoto, Makoto Abe, Yoshihiro Takei
  • Patent number: 8380411
    Abstract: A clutch control device for vehicle equipped with a clutch actuator driven by a working fluid, wherein secular change in the flow rate control valve for controlling the working fluid is compensated, and the rate of connection of the clutch is correctly controlled by a simple means. To control the stroke of a clutch actuator 110, the clutch control device is provided with a single flow rate control valve 1 that controls the feed and discharge of the working fluid by using an electromagnetic solenoid. A flow rate control valve control device 9 is provided with a learning device 91 that learns the neutral position of the flow rate control valve 1 which shuts off the flow of the working fluid, separately detects the amounts of electric current to a coil 8 of when the rate of change in the stroke becomes zero depending upon the directions in which the valve body of the flow control valve 1 moves, and learns the central point at the neutral position by averaging the detected values.
    Type: Grant
    Filed: September 16, 2009
    Date of Patent: February 19, 2013
    Assignee: Isuzu Motors Limited
    Inventors: Yoshihiro Takei, Yasushi Yamamoto, Hiroyuki Kawanishi
  • Patent number: 8265844
    Abstract: A clutch control device for vehicle is equipped with a clutch actuator driven by a working fluid, and works to correctly control the rate of connection of the clutch by a simple means compensating secular change of a flow rate control valve that controls the working fluid. The clutch control device has a single flow rate control valve 1 for controlling the feed and discharge of the working fluid to change the stroke of the clutch actuator 110. The flow rate control valve 1 has a neutral position at where feed and discharge of the working fluid is stopped. A flow rate control valve control device 9 is provided with a learning device 91 for learning the neutral position. To control the stroke, the flow rate control valve control device 9 corrects the amount of electric current to a coil 8 of an electromagnetic solenoid based on a value learned by the learning device 91 and compensates a change in the flow rate characteristics caused by secular change.
    Type: Grant
    Filed: March 13, 2008
    Date of Patent: September 11, 2012
    Assignee: Isuzu Motors Limited
    Inventors: Yoshihiro Takei, Yasushi Yamamoto, Hiroyuki Kawanishi
  • Publication number: 20110168516
    Abstract: A clutch control device for vehicle equipped with a clutch actuator driven by a working fluid, wherein the rate of connection of the clutch is correctly controlled by using a simple means while compensating for secular changes in a flow rate control valve that controls the working fluid. To control the stroke of the clutch actuator 110, the clutch control device is provided with a single flow rate control valve 1 that controls the feed and discharge of the working fluid by using an electromagnetic solenoid. A flow rate control valve control device 9 is equipped with a learning device 91 that learns the neutral position of the flow rate control valve 1 to shut off the flow of the working fluid. At the time of learning, the learning device 91 renders the transmission to be neutral, executes the operation for increasing the stroke after the stroke is decreased, detects the rate of change in the stroke, and learns the central point at the neutral position.
    Type: Application
    Filed: September 16, 2009
    Publication date: July 14, 2011
    Inventors: Yoshihiro Takei, Yasushi Yamamoto, Hiroyuki Kawanishi
  • Publication number: 20110168515
    Abstract: A clutch control device for vehicle equipped with a clutch actuator driven by a working fluid, wherein secular change in the flow rate control valve for controlling the working fluid is compensated, and the rate of connection of the clutch is correctly controlled by a simple means. To control the stroke of a clutch actuator 110, the clutch control device is provided with a single flow rate control valve 1 that controls the feed and discharge of the working fluid by using an electromagnetic solenoid. A flow rate control valve control device 9 is provided with a learning device 91 that learns the neutral position of the flow rate control valve 1 which shuts off the flow of the working fluid, separately detects the amounts of electric current to a coil 8 of when the rate of change in the stroke becomes zero depending upon the directions in which the valve body of the flow control valve 1 moves, and learns the central point at the neutral position by averaging the detected values.
    Type: Application
    Filed: September 16, 2009
    Publication date: July 14, 2011
    Applicant: ISUZU MOTORS LIMITED
    Inventors: Yoshihiro Takei, Yasushi Yamamoto, Hiriyuki Kawanishi
  • Publication number: 20110168011
    Abstract: This invention relates to a feedback control device for controlling the stroke of an actuator stroke driven by a working fluid. The feedback control device for controlling the stroke correctly controls the stroke using a simple means by compensating secular changes in the flow rate control valve that controls the working fluid. The device for controlling the stroke of an actuator 110 is provided with a single flow rate control valve 1 for controlling the feed and discharge of the working fluid, and the flow rate control valve is operated to control the stroke by feedback. The flow rate control valve 1 has a neutral position where the working fluid is neither fed nor discharged, and a flow rate control valve control device 9 is provided with a learning device 91 for learning variations in the neutral position. The feedback control is executed, i.e.
    Type: Application
    Filed: September 16, 2009
    Publication date: July 14, 2011
    Inventors: Yoshihiro Takei, Yasushi Yamamoto, Hiroyuki Kawanishi
  • Publication number: 20110107762
    Abstract: A steam engine in which a liquid and a steam are jetted so that a rotor is turned by the reaction thereof, and the rotor having a well-balanced simple structure. In the steam engine, the rotor 5 having a plurality of bent flow paths 53A to 53D arranged at regular intervals therein is rotatably supported in a closed container 1 filled with the liquid being fitted onto a boss portion 11 of the closed container 1. The boss portion 11 is alternately forming slide-contact portions 11A having a steam feed port and recessed portions 11B. The steam fed into the bent flow path 53 from the steam feed port causes the liquid in the flow path to be jetted outward to rotate the rotor 5. The rotor 5 is of a point-symmetrical shape in cross section free of unbalanced weight, has no moving part, and is simple in structure. When the bent flow path 53 communicates with the recessed portion 11B, the steam remaining in the flow path is cooled and disappears, and the flow path is filled with the liquid.
    Type: Application
    Filed: December 18, 2008
    Publication date: May 12, 2011
    Inventors: Yasushi Yamamoto, Makoto Abe, Yoshihiro Takei
  • Publication number: 20100094517
    Abstract: A clutch control device for vehicle is equipped with a clutch actuator driven by a working fluid, and works to correctly control the rate of connection of the clutch by a simple means compensating secular change of a flow rate control valve that controls the working fluid. The clutch control device has a single flow rate control valve 1 for controlling the feed and discharge of the working fluid to change the stroke of the clutch actuator 110. The flow rate control valve 1 has a neutral position at where feed and discharge of the working fluid is stopped. A flow rate control valve control device 9 is provided with a learning device 91 for learning the neutral position. To control the stroke, the flow rate control valve control device 9 corrects the amount of electric current to a coil 8 of an electromagnetic solenoid based on a value learned by the learning device 91 and compensates a change in the flow rate characteristics caused by secular change.
    Type: Application
    Filed: March 13, 2008
    Publication date: April 15, 2010
    Inventors: Yoshihiro Takei, Yasushi Yamamoto, Hiroyuki Kawanishi
  • Patent number: 4128798
    Abstract: A charging circuit for charging a DC cell is provided. A supply circuit produces a charging current at a first selected value and a current gating circuit is disposed intermediate the DC cell and the supply circuit for selectively applying the charging current produced by the supply circuit to the DC cell. A control circuit is coupled to the DC cell and to the gating circuit, the control circuit being adapted to detect when the cell is charged to a predetermined maximum voltage, and in response thereto control the gating circuit to prevent the charging current from being supplied to the DC cell. The control circuit is further adapted in response to a drop in the voltage of the cell to a second predetermined level, to control the gating circuit and thereby permit a charging current of a second value reduced with respect to said first value to be applied to the DC cell.
    Type: Grant
    Filed: May 3, 1976
    Date of Patent: December 5, 1978
    Assignee: Kabushiki Kaisha Suwa Seikosha
    Inventor: Yoshihiro Takei