Patents by Inventor Yoshihisa Kishimoto

Yoshihisa Kishimoto has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11926285
    Abstract: A remote communication system includes a portable device; and a fixed system. The fixed system includes main communication modules; and a position estimating unit configured to estimate a position of the portable device, based on an incident angle of a signal from the portable device, upon detecting the signal by antennas provided in the main communication modules. When there are two main communication modules for which the incident angle is known, the position of the portable device is estimated based on the incident angle. When there is one main communication module for which the incident angle is known, the position of the portable device is estimated based on the incident angle and a received radio wave intensity of the signal. When there is no main communication module for which the incident angle is known, the position of the portable device is estimated based on the received radio wave intensity.
    Type: Grant
    Filed: July 27, 2021
    Date of Patent: March 12, 2024
    Assignee: ALPS ALPINE CO., LTD.
    Inventors: Yoshihisa Kishimoto, Keigo Wakana, Daisuke Takai, Yukimitsu Yamada, Mitsuharu Nakasato, Kazuma Sato
  • Publication number: 20210354662
    Abstract: A remote communication system includes a portable device; and a fixed system. The fixed system includes main communication modules; and a position estimating unit configured to estimate a position of the portable device, based on an incident angle of a signal from the portable device, upon detecting the signal by antennas provided in the main communication modules. When there are two main communication modules for which the incident angle is known, the position of the portable device is estimated based on the incident angle. When there is one main communication module for which the incident angle is known, the position of the portable device is estimated based on the incident angle and a received radio wave intensity of the signal. When there is no main communication module for which the incident angle is known, the position of the portable device is estimated based on the received radio wave intensity.
    Type: Application
    Filed: July 27, 2021
    Publication date: November 18, 2021
    Inventors: Yoshihisa KISHIMOTO, Keigo WAKANA, Daisuke TAKAI, Yukimitsu YAMADA, Mitsuharu NAKASATO, Kazuma SATO
  • Patent number: 9495816
    Abstract: A mobile device includes a first communication device that transmits a first transmission signal to a vehicle side, a second communication device that transmits a second transmission signal in response to an electromagnetic field received from the vehicle side, a control unit that controls the first communication device and second communication device, and a circuit board. The first communication device includes a loop antenna that is formed by a conductive wire formed on the circuit board. The second communication device includes a transponder coil, which is substantially rectangular, on the circuit board. One shorter edge of the transponder coil is placed near an edge, of the circuit board, that faces the vehicle. The conductive wire is configured so as to enter a projected area, on the circuit board, of the transponder coil from one longer edge of the projected area and exit the projected area from the other longer edge.
    Type: Grant
    Filed: December 11, 2015
    Date of Patent: November 15, 2016
    Assignee: Alps Electric Co., Ltd.
    Inventors: Yoshihisa Kishimoto, Shinichi Yamamoto, Satoshi Kanbayashi, Ryuta Kawasaki, Naoto Yoneyama
  • Patent number: 9419671
    Abstract: A mobile device includes a circuit board on which an electronic circuit used to perform wireless communication with a vehicle-mounted device is mounted, a battery holder that holds a battery from which electric power is supplied to the electronic circuit, and a case member in which the circuit board and the battery holder are accommodated. Test ports, which are terminal electrodes used in test of the electronic circuit, are provided on one plate surface of the circuit board. The battery holder holds the battery at a position at which the battery faces the test ports.
    Type: Grant
    Filed: December 23, 2015
    Date of Patent: August 16, 2016
    Assignee: ALPS ELECTRIC CO., LTD.
    Inventor: Yoshihisa Kishimoto
  • Publication number: 20160191096
    Abstract: A mobile device includes a circuit board on which an electronic circuit used to perform wireless communication with a vehicle-mounted device is mounted, a battery holder that holds a battery from which electric power is supplied to the electronic circuit, and a case member in which the circuit board and the battery holder are accommodated. Test ports, which are terminal electrodes used in test of the electronic circuit, are provided on one plate surface of the circuit board. The battery holder holds the battery at a position at which the battery faces the test ports.
    Type: Application
    Filed: December 23, 2015
    Publication date: June 30, 2016
    Inventor: Yoshihisa Kishimoto
  • Publication number: 20160180613
    Abstract: A mobile device includes a first communication device that transmits a first transmission signal to a vehicle side, a second communication device that transmits a second transmission signal in response to an electromagnetic field received from the vehicle side, a control unit that controls the first communication device and second communication device, and a circuit board. The first communication device includes a loop antenna that is formed by a conductive wire formed on the circuit board. The second communication device includes a transponder coil, which is substantially rectangular, on the circuit board. One shorter edge of the transponder coil is placed near an edge, of the circuit board, that faces the vehicle. The conductive wire is configured so as to enter a projected area, on the circuit board, of the transponder coil from one longer edge of the projected area and exit the projected area from the other longer edge.
    Type: Application
    Filed: December 11, 2015
    Publication date: June 23, 2016
    Inventors: Yoshihisa Kishimoto, Shinichi Yamamoto, Satoshi Kanbayashi, Ryuta Kawasaki, Naoto Yoneyama
  • Patent number: 6187259
    Abstract: The object of the present invention is to provide rare-earth system sintered magnets such as R—Fe—B system or R—Co system having excellent magnetic properties, unique configuration of a small size, thin wall thickness and intricate geometry. With the method for preparing the present invention, a granulation of alloy powders can be achieved easily, a chemical reaction between rare-earth system and binder substances can be suppressed, so that the residual oxygen and carbon levels in the sintered products can be reduced. Moreover, by this production method, the flowability and lubricant capability during the forming process can be improved. The dimension accuracy and productivity are also enhanced. A certain type of binder is added to rare-earth alloy powders and kneaded into a slurry state. The slurry is then formed into granulated powders by spray-dryer equipment. The thus granulated powders are molded, and sintered through a powder metallurgy technique.
    Type: Grant
    Filed: March 19, 1997
    Date of Patent: February 13, 2001
    Assignee: Sumitomo Special Metals Co., Ltd.
    Inventors: Osamu Yamashita, Yoshihisa Kishimoto, Wataru Takahashi, Nobushige Hiraishi, Yoshiyuki Hashimasa, Masakazu Ohkita
  • Patent number: 5527504
    Abstract: To a fine R-Fe-B alloy powder comprised predominantly of 10-30 atomic % of R (wherein R stands for at least one elements selected from rare earth elements including yttrium), 2-28 atomic % of B, and 65-82 atomic % of Fe in which up to 50 atomic % of Fe may be replaced by Co, at least one boric acid ester compound such as tributyl borate is added as a lubricant in a proportion of 0.01%-2% by weight and mixed uniformly before, during, or after fine grinding of the alloy powder. The resulting powder mixture is compacted by compression molding in a magnetic field and the green compacts are sintered and aged. Compression molding can be performed continuously without need of mold lubrication, and the resulting magnets have improved magnet properties with respect to residual flux density, maximum energy product, and intrinsic coercive force.
    Type: Grant
    Filed: May 9, 1995
    Date of Patent: June 18, 1996
    Assignees: Sumitomo Metal Industries, Ltd., Sumitomo Special Metals Co. Ltd.
    Inventors: Yoshihisa Kishimoto, Nobushige Hiraishi, Wataru Takahashi, Masakazu Ohkita, Naoyuki Ishigaki, Yutaka Matsuura
  • Patent number: 5486224
    Abstract: To a fine R--Fe--B alloy powder comprised predominantly of 10-30 atomic % of R (wherein R stands for at least one element selected from rare earth elements including yttrium), 2-28 atomic % of B, and 65-82 atomic % of Fe in which up to 50 atomic % of Fe may be replaced by Co, at least one boric acid ester compound such as tributyl borate is added as a lubricant in a proportion of 0.01%-2% by weight and mixed uniformly before, during, or after fine grinding of the alloy powder. The resulting powder mixture is compacted by compression molding in a magnetic field and the green compacts are sintered and aged. Compression molding can be performed continuously without need of mold lubrication, and the resulting magnets have improved magnet properties with respect to residual flux density, maximum energy product, and intrinsic coercive force.
    Type: Grant
    Filed: December 27, 1994
    Date of Patent: January 23, 1996
    Assignees: Sumitomo Metal Industries, Ltd., Sumitomo Special Metals Co., Ltd.
    Inventors: Yoshihisa Kishimoto, Nobushige Hiraishi, Wataru Takahashi, Masakazu Ohkita, Naoyuki Ishigaki, Yutaka Matsuura