Patents by Inventor Yoshihisa Ono

Yoshihisa Ono has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11199201
    Abstract: An impeller back surface cooling structure for cooling a back surface of a compressor impeller of a supercharger includes: a first member facing a back surface of a compressor impeller via a gap; and a second member extending in a circumferential direction of the compressor impeller and forming, between the first member and the second member, a cooling passage through which a cooling medium being a liquid flows.
    Type: Grant
    Filed: January 18, 2017
    Date of Patent: December 14, 2021
    Assignee: MITSUBISHI HEAVY INDUSTRIES MARINE MACHINERY & EQUIPMENT CO., LTD.
    Inventors: Satoshi Makino, Koichi Sugimoto, Fumito Hiratani, Yukihiro Iwasa, Yoshihisa Ono
  • Publication number: 20210180511
    Abstract: A turbocharger includes: a suction part (10b) configured to suction a fluid; an impeller (12) configured to compress the fluid supplied from the suction part (10b); a drive shaft (18) having one end to which the impeller (12) is attached; an intermediate shaft (16) provided at the one end of the drive shaft (18) such that the drive shaft (18) extends in an axial direction from a downstream side to an upstream side of the impeller (12); a motor (14) or a generator having a rotor (14a) attached to a distal end of the intermediate shaft (16) via a coupling (20a), a stator (14c) provided so as to correspond to the rotor (14a), and a body portion (14b) configured to hold the stator (14c); and a cover (30) formed into a tubular shape to surround the intermediate shaft (16) and the coupling (20a).
    Type: Application
    Filed: December 7, 2018
    Publication date: June 17, 2021
    Applicant: MITSUBISHI HEAVY INDUSTRIES MARINE MACHINERY & EQUIPMENT CO., LTD.
    Inventors: Takeshi Tsuji, Yoshihisa Ono, Hidetaka Nishimura, Ichiro Hirakawa
  • Patent number: 10859021
    Abstract: An air fuel ratio control apparatus controls an air fuel ratio of an internal combustion engine. The apparatus includes an upstream sensor measuring the air fuel ratio of exhaust gas in an exhaust passage at an upstream side of a purification catalyst; a downstream sensor measuring the air fuel ratio of the exhaust gas in the exhaust passage at a downstream side of the purification catalyst; and a control unit that adjusts an amount of fuel supplied to the internal combustion engine, thereby controlling the air fuel ratio measured at the upstream sensor to be a target air fuel ratio. The control unit performs a calibration control where a calibration value corresponding to the air fuel ratio deviation is added to or subtracted from the target air fuel ratio such that the air fuel ratio deviation approaches zero.
    Type: Grant
    Filed: June 19, 2018
    Date of Patent: December 8, 2020
    Assignee: DENSO CORPORATION
    Inventors: Yoshihisa Ono, Hiroshi Suzuki
  • Patent number: 10598085
    Abstract: A hybrid turbocharger includes a first power conversion unit to convert direct-current power into alternating-current power to be output to a generator motor, a smoothing capacitor between direct-current buses, and a control unit that controls the first power conversion unit so as to cause actual generator motor speed to comply with an engine speed command of the generator motor input from an upstream controller during a motoring operation of the generator motor. The control unit changes the engine speed command to a value which is equal to or greater than the actual generator motor speed if the engine speed command of the generator motor is less than the actual generator motor speed and a direct-current bus voltage is equal to or greater than a predetermined first threshold value during the motoring operation. Accordingly, the direct-current bus voltage can be prevented from increasing during the motoring operation.
    Type: Grant
    Filed: September 21, 2017
    Date of Patent: March 24, 2020
    Assignee: MITSUBISHI HEAVY INDUSTRIES, LTD
    Inventors: Yukio Yamashita, Musashi Sakamoto, Yoshihisa Ono, Keiichi Shiraishi
  • Patent number: 10590839
    Abstract: A hybrid turbocharger includes a first power conversion unit to convert direct-current power into alternating-current power to be output to a generator motor, a smoothing capacitor between direct-current buses, and a control unit that controls the first power conversion unit so as to cause actual generator motor speed to comply with an engine speed command of the generator motor input from an upstream controller during a motoring operation of the generator motor. The control unit changes the engine speed command to a value which is equal to or greater than the actual generator motor speed if the engine speed command of the generator motor is less than the actual generator motor speed and a direct-current bus voltage is equal to or greater than a predetermined first threshold value during the motoring operation. Accordingly, the direct-current bus voltage can be prevented from increasing during the motoring operation.
    Type: Grant
    Filed: September 21, 2017
    Date of Patent: March 17, 2020
    Assignee: MITSUBISHI HEAVY INDUSTRIES, LTD
    Inventors: Yukio Yamashita, Musashi Sakamoto, Yoshihisa Ono, Keiichi Shiraishi
  • Patent number: 10316692
    Abstract: A method of suppressing shaft vibration of a turbocharger capable of being driven by a motor includes: a specific-vibration-state determination step of determining whether a rotor shaft of the turbocharger is in a specific vibration state in which a magnitude of shaft vibration of the rotor shaft is, or is likely to be, greater than a predetermined magnitude; an excited state determination step of determining whether the motor is in an excited state in which an exciting voltage is applied to the motor; and a vibration suppression execution step of applying the exciting voltage to the motor if it is determined that the rotor shaft is in the specific vibration state in the specific-vibration-state determination step and it is determined that the motor is not in the excited state in the excited state determination step.
    Type: Grant
    Filed: December 20, 2016
    Date of Patent: June 11, 2019
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Tadashi Yoshida, Musashi Sakamoto, Ryoji Sasaki, Yoshihisa Ono, Hidetaka Nishimura, Takeshi Tsuji
  • Patent number: 10308338
    Abstract: A device and a method for starting an internal combustion engine, provided with an exhaust turbine turbocharger, an electric motor generator, a power storage unit, an engine rotation starter device, injectors, and a control device that controls the electric motor generator, the engine rotation starter device, and the injectors, wherein when an engine rotation activation start signal is input and the rotational frequency of the exhaust turbine turbocharger reaches an engine rotation-activation-starting rotational frequency, the control device starts driving the engine rotation starter device, and when the engine rotational frequency reaches a fuel-supply-starting rotational frequency, the control device starts driving the injectors, thus improving the starting performance of the internal combustion engine.
    Type: Grant
    Filed: August 7, 2015
    Date of Patent: June 4, 2019
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Yukio Yamashita, Yoshihisa Ono, Musashi Sakamoto, Takeshi Tsuji, Akihiro Miyanagi
  • Patent number: 10247203
    Abstract: A noise reduction structure includes a compressor discharge-side pipe portion, a first porous plate having a plurality of through holes and extending circumferentially along an inner circumferential surface of the compressor discharge-side pipe portion so that an air layer is formed between the first porous plate and the inner circumferential surface, a partition dividing an interior of the compressor discharge-side pipe portion in a radial direction in a circumferential direction of the compressor discharge-side pipe portion so as to form a plurality of flow paths in the compressor discharge-side pipe portion, and a second porous plate having a plurality of through holes. The second porous plate is provided in each of the plurality of flow paths and extends along the partition so that an air layer is formed between the second porous plate and the partition.
    Type: Grant
    Filed: January 11, 2017
    Date of Patent: April 2, 2019
    Assignee: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Yushi Ono, Hiroyuki Hosoya, Kentaro Hayashi, Seokcheol Kim, Yoshihisa Ono, Yasuhiro Wada
  • Patent number: 10180143
    Abstract: A method of manufacturing a turbocharger which allows easy performance of assembly operations of a motor rotor and a stator in a motor overhang structural turbocharger is provided.
    Type: Grant
    Filed: February 23, 2015
    Date of Patent: January 15, 2019
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Takeshi Tsuji, Yoshihisa Ono
  • Publication number: 20180363582
    Abstract: An air fuel ratio control apparatus controls an air fuel ratio of an internal combustion engine. The apparatus includes an upstream sensor measuring the air fuel ratio of exhaust gas in an exhaust passage at an upstream side of a purification catalyst; a downstream sensor measuring the air fuel ratio of the exhaust gas in the exhaust passage at a downstream side of the purification catalyst; and a control unit that adjusts an amount of fuel supplied to the internal combustion engine, thereby controlling the air fuel ratio measured at the upstream sensor to be a target air fuel ratio. The control unit performs a calibration control where a calibration value corresponding to the air fuel ratio deviation is added to or subtracted from the target air fuel ratio such that the air fuel ratio deviation approaches zero.
    Type: Application
    Filed: June 19, 2018
    Publication date: December 20, 2018
    Inventors: Yoshihisa ONO, Hiroshi SUZUKI
  • Patent number: 10156484
    Abstract: An exhausted gas temperature measurement device includes a first exhausted gas temperature output portion, a second exhausted gas temperature output portion, an over-correction determining portion, and a measurement value output portion. The first exhausted gas temperature output portion outputs an uncorrected value that corresponds to an output of a temperature sensor. The second exhausted gas temperature output portion outputs a corrected value based on a response lag model. The over-correction determining portion determines, based on the uncorrected value and the corrected value, whether the over-correction occurs. The measurement value output portion outputs the corrected value as the measurement value when the over-correction determining portion does not determine that the over-correction occurs, and the measurement value output portion outputs a value different from the corrected value when the over-correction determining portion determines that the over-correction occurs.
    Type: Grant
    Filed: September 19, 2015
    Date of Patent: December 18, 2018
    Assignee: DENSO CORPORATION
    Inventor: Yoshihisa Ono
  • Patent number: 10094263
    Abstract: According to a device and a method for controlling an internal combustion engine, a control device (38) enables controllability of the internal combustion engine to be improved by preventing surging from occurring upon starting or stopping of the internal combustion engine, by opening a relief valve (28) as a turbine rotational speed reaches a surging rotational speed when the control device (38) causes a motor generator (32) to assist in rotation of the turbocharger (12) upon starting of a diesel engine body (11).
    Type: Grant
    Filed: August 7, 2015
    Date of Patent: October 9, 2018
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Yukio Yamashita, Yoshihisa Ono, Musashi Sakamoto, Takeshi Tsuji, Akihiro Miyanagi
  • Patent number: 10066539
    Abstract: A control unit controls a first power converter so as to make the speed of a motor/generator coincide with a prescribed speed command. A speed command (N*) set by an upper stream control system is inputted to a smoothing unit of the control unit. In the smoothing unit, the speed command (N*) is smoothed by a first-order lag element, and the rate of change is limited by a rate limiter to a prescribed value or less. For the speed command (Ns*) outputted from the smoothing unit, the difference (?N) from the actual speed (N) of the motor/generator is calculated in a difference calculator, a control command (S) based on this difference (?N) is generated in a control signal generator, and the first power converter is controlled on the basis of this control command (S). Fluctuations in the supply of power to the electric motor are thereby suppressed.
    Type: Grant
    Filed: February 23, 2015
    Date of Patent: September 4, 2018
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Yukio Yamashita, Musashi Sakamoto, Yoshihisa Ono
  • Publication number: 20180223873
    Abstract: A noise reduction structure includes a compressor discharge-side pipe portion, a first porous plate having a plurality of through holes and extending circumferentially along an inner circumferential surface of the compressor discharge-side pipe portion so that an air layer is formed between the first porous plate and the inner circumferential surface, a partition dividing an interior of the compressor discharge-side pipe portion in a radial direction in a circumferential direction of the compressor discharge-side pipe portion so as to form a plurality of flow paths in the compressor discharge-side pipe portion, and a second porous plate having a plurality of through holes. The second porous plate is provided in each of the plurality of flow paths and extends along the partition so that an air layer is formed between the second porous plate and the partition.
    Type: Application
    Filed: January 11, 2017
    Publication date: August 9, 2018
    Applicant: Mitsubishi Heavy Industries, Ltd.
    Inventors: Yushi ONO, Hiroyuki HOSOYA, Kentaro HAYASHI, Seokcheol KIM, Yoshihisa ONO, Yasuhiro WADA
  • Publication number: 20180216633
    Abstract: An impeller back surface cooling structure for cooling a back surface of a compressor impeller of a supercharger includes: a first member facing a back surface of a compressor impeller via a gap; and a second member extending in a circumferential direction of the compressor impeller and forming, between the first member and the second member, a cooling passage through which a cooling medium being a liquid flows.
    Type: Application
    Filed: January 18, 2017
    Publication date: August 2, 2018
    Applicant: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Satoshi Makino, Koichi Sugimoto, Fumito Hiratani, Yukihiro Iwasa, Yoshihisa Ono
  • Publication number: 20180171823
    Abstract: A method of suppressing shaft vibration of a turbocharger capable of being driven by a motor includes: a specific-vibration-state determination step of determining whether a rotor shaft of the turbocharger is in a specific vibration state in which a magnitude of shaft vibration of the rotor shaft is, or is likely to be, greater than a predetermined magnitude; an excited state determination step of determining whether the motor is in an excited state in which an exciting voltage is applied to the motor; and a vibration suppression execution step of applying the exciting voltage to the motor if it is determined that the rotor shaft is in the specific vibration state in the specific-vibration-state determination step and it is determined that the motor is not in the excited state in the excited state determination step.
    Type: Application
    Filed: December 20, 2016
    Publication date: June 21, 2018
    Inventors: Tadashi Yoshida, Musashi Sakamoto, Ryoji Sasaki, Yoshihisa Ono, Hidetaka Nishimura, Takeshi Tsuji
  • Publication number: 20180016970
    Abstract: A hybrid turbocharger includes a first power conversion unit to convert direct-current power into alternating-current power to be output to a generator motor, a smoothing capacitor between direct-current buses, and a control unit that controls the first power conversion unit so as to cause actual generator motor speed to comply with an engine speed command of the generator motor input from an upstream controller during a motoring operation of the generator motor. The control unit changes the engine speed command to a value which is equal to or greater than the actual generator motor speed if the engine speed command of the generator motor is less than the actual generator motor speed and a direct-current bus voltage is equal to or greater than a predetermined first threshold value during the motoring operation. Accordingly, the direct-current bus voltage can be prevented from increasing during the motoring operation.
    Type: Application
    Filed: September 21, 2017
    Publication date: January 18, 2018
    Inventors: Yukio Yamashita, Musashi Sakamoto, Yoshihisa Ono, Keiichi Shiraishi
  • Publication number: 20180016971
    Abstract: A hybrid turbocharger includes a first power conversion unit to convert direct-current power into alternating-current power to be output to a generator motor, a smoothing capacitor between direct-current buses, and a control unit that controls the first power conversion unit so as to cause actual generator motor speed to comply with an engine speed command of the generator motor input from an upstream controller during a motoring operation of the generator motor. The control unit changes the engine speed command to a value which is equal to or greater than the actual generator motor speed if the engine speed command of the generator motor is less than the actual generator motor speed and a direct-current bus voltage is equal to or greater than a predetermined first threshold value during the motoring operation. Accordingly, the direct-current bus voltage can be prevented from increasing during the motoring operation.
    Type: Application
    Filed: September 21, 2017
    Publication date: January 18, 2018
    Inventors: Yukio Yamashita, Musashi Sakamoto, Yoshihisa Ono, Keiichi Shiraishi
  • Publication number: 20180001984
    Abstract: A device and a method for starting an internal combustion engine, provided with an exhaust turbine turbocharger, an electric motor generator, a power storage unit, an engine rotation starter device, injectors, and a control device that controls the electric motor generator, the engine rotation starter device, and the injectors, wherein when an engine rotation activation start signal is input and the rotational frequency of the exhaust turbine turbocharger reaches an engine rotation-activation-starting rotational frequency, the control device starts driving the engine rotation starter device, and when the engine rotational frequency reaches a fuel-supply-starting rotational frequency, the control device starts driving the injectors, thus improving the starting performance of the internal combustion engine.
    Type: Application
    Filed: August 7, 2015
    Publication date: January 4, 2018
    Inventors: Yukio Yamashita, Yoshihisa Ono, Musashi Sakamoto, Takeshi Tsuji, Akihiro Miyanagi
  • Patent number: 9822699
    Abstract: A hybrid turbocharger includes a first power conversion unit to convert a direct-current power into alternating-current power to be output to a generator motor, a smoothing capacitor between direct-current buses, and a control unit that controls the first power conversion unit so as to cause actual generator motor speed to comply with an engine speed command of the generator motor input from an upstream controller during a motoring operation of the generator motor. The control unit changes the engine speed command to a value which is equal to or greater than the actual generator motor speed if the engine speed command of the generator motor is less than the actual generator motor speed and a direct-current bus voltage is equal to or greater than a predetermined first threshold value during the motoring operation. Accordingly, the direct-current bus voltage can be prevented from increasing during the motoring operation.
    Type: Grant
    Filed: February 20, 2015
    Date of Patent: November 21, 2017
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Yukio Yamashita, Musashi Sakamoto, Yoshihisa Ono, Keiichi Shiraishi