Patents by Inventor Yoshika Kaneko
Yoshika Kaneko has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20120220122Abstract: Provided are a nitride semiconductor device and a manufacturing method thereof. The nitride semiconductor device includes an insulating layer and a metal layer formed on a nitride semiconductor layer. The insulating layer makes contact with the nitride semiconductor layer. A separation preventing layer is formed between the insulating layer and the metal layer so as to make contact with each of these layers. The separation preventing layer has, as a main component, at least one kind of oxide of a metal selected from the group consisting of tungsten, molybdenum, chromium, titanium, nickel, hafnium, zinc, indium and yttrium.Type: ApplicationFiled: May 10, 2012Publication date: August 30, 2012Inventors: Daisuke HANAOKA, Masafumi KONDO, Susumu OHMI, Kunihiro TAKATANI, Yoshika KANEKO
-
Patent number: 8203152Abstract: The nitride semiconductor device includes an insulating layer and a metal layer formed on a nitride semiconductor layer. The insulating layer makes contact with the nitride semiconductor layer. A separation preventing layer is formed between the insulating layer and the metal layer so as to make contact with each of these layers. The separation preventing layer includes, as a main component, at least one oxide of a metal selected from a group of metals consisting of tungsten, molybdenum, chromium, titanium, nickel, hafnium, zinc, indium and yttrium.Type: GrantFiled: October 27, 2005Date of Patent: June 19, 2012Assignee: Sharp Kabushiki KaishaInventors: Daisuke Hanaoka, Masafumi Kondo, Susumu Ohmi, Kunihiro Takatani, Yoshika Kaneko
-
Patent number: 8030110Abstract: A nitride semiconductor laser device uses a substrate with low defect density, contains reduced strains inside a nitride semiconductor film, and thus offers a satisfactorily long useful life. On a GaN substrate (10) with a defect density as low as 106 cm?2 or less, a stripe-shaped depressed portion (16) is formed by etching. On this substrate (10), a nitride semiconductor film (11) is grown, and a laser stripe (12) is formed off the area right above the depressed portion (16). With this structure, the laser stripe (12) is free from strains, and the semiconductor laser device offers a long useful life. Moreover, the nitride semiconductor film (11) develops reduced cracks, resulting in a greatly increased yield rate.Type: GrantFiled: December 27, 2010Date of Patent: October 4, 2011Assignee: Sharp Kabushiki KaishaInventors: Takeshi Kamikawa, Eiji Yamada, Masahiro Araki, Yoshika Kaneko
-
Publication number: 20110136276Abstract: A nitride semiconductor laser device uses a substrate with low defect density, contains reduced strains inside a nitride semiconductor film, and thus offers a satisfactorily long useful life. On a GaN substrate (10) with a defect density as low as 106 cm?2 or less, a stripe-shaped depressed portion (16) is formed by etching. On this substrate (10), a nitride semiconductor film (11) is grown, and a laser stripe (12) is formed off the area right above the depressed portion (16). With this structure, the laser stripe (12) is free from strains, and the semiconductor laser device offers a long useful life. Moreover, the nitride semiconductor film (11) develops reduced cracks, resulting in a greatly increased yield rate.Type: ApplicationFiled: December 27, 2010Publication date: June 9, 2011Applicant: SHARP KABUSHIKI KAISHAInventors: Takeshi KAMIKAWA, Eiji Yamada, Masahiro Araki, Yoshika Kaneko
-
Patent number: 7903710Abstract: A nitride semiconductor light-emitting device wherein a substrate or nitride semiconductor layer has a defect concentration region and a low defect density region other than the defect concentration region. A portion including the defect concentration region of the nitride semiconductor layer or substrate has a trench region deeper than the low defect density region. Thus by digging the trench in the defect concentration region, the growth detection is uniformized, and the surface planarity is improved. The uniformity of the characteristic in the wafer surface leads to improvement of the yield.Type: GrantFiled: February 19, 2010Date of Patent: March 8, 2011Assignees: Sharp Kabushiki Kaisha, Sumitomo Electric Industries, Ltd.Inventors: Takeshi Kamikawa, Yoshika Kaneko, Kensaku Motoki
-
Patent number: 7903707Abstract: A nitride semiconductor light-emitting device wherein a substrate or nitride semiconductor layer has a defect concentration region and a low defect density region other than the defect concentration region. A portion including the defect concentration region of the nitride semiconductor layer or substrate has a trench region deeper than the low defect density region. Thus by digging the trench in the defect concentration region, the growth detection is uniformized, and the surface planarity is improved. The uniformity of the characteristic in the wafer surface leads to improvement of the yield.Type: GrantFiled: May 27, 2004Date of Patent: March 8, 2011Assignees: Sharp Kabushiki Kaisha, Sumitomo Electric Industries, Ltd.Inventors: Takeshi Kamikawa, Yoshika Kaneko, Kensaku Motoki
-
Patent number: 7903708Abstract: A nitride semiconductor laser device uses a substrate with low defect density, contains reduced strains inside a nitride semiconductor film, and thus offers a satisfactorily long useful life. On a GaN substrate (10) with a defect density as low as 106 cm?2 or less, a stripe-shaped depressed portion (16) is formed by etching. On this substrate (10), a nitride semiconductor film (11) is grown, and a laser stripe (12) is formed off the area right above the depressed portion (16). With this structure, the laser stripe (12) is free from strains, and the semiconductor laser device offers a long useful life. Moreover, the nitride semiconductor film (11) develops reduced cracks, resulting in a greatly increased yield rate.Type: GrantFiled: July 30, 2004Date of Patent: March 8, 2011Assignee: Sharp Kabushiki KaishaInventors: Takeshi Kamikawa, Eiji Yamada, Masahiro Araki, Yoshika Kaneko
-
Publication number: 20100150199Abstract: A nitride semiconductor light-emitting device wherein a substrate or nitride semiconductor layer has a defect concentration region and a low defect density region other than the defect concentration region. A portion including the defect concentration region of the nitride semiconductor layer or substrate has a trench region deeper than the low defect density region. Thus by digging the trench in the defect concentration region, the growth detection is uniformized, and the surface planarity is improved. The uniformity of the characteristic in the wafer surface leads to improvement of the yield.Type: ApplicationFiled: February 19, 2010Publication date: June 17, 2010Inventors: Takeshi Kamikawa, Yoshika Kaneko, Kensaku Motoki
-
Patent number: 7692200Abstract: A nitride semiconductor light-emitting device wherein a substrate or nitride semiconductor layer has a defect concentration region and a low defect density region other than the defect concentration region. A portion including the defect concentration region of the nitride semiconductor layer or substrate has a trench region deeper than the low defect density region. Thus by digging the trench in the defect concentration region, the growth detection is uniformized, and the surface planarity is improved. The uniformity of the characteristic in the wafer surface leads to improvement of the yield.Type: GrantFiled: December 3, 2008Date of Patent: April 6, 2010Assignees: Sharp Kabushiki Kaisha, Sumitomo Electric Industries, Ltd.Inventors: Takeshi Kamikawa, Yoshika Kaneko, Kensaku Motoki
-
Patent number: 7529283Abstract: A nitride semiconductor light-emitting device includes a nitride semiconductor substrate of which at least part of a surface is formed from a nitride semiconductor and a nitride film semiconductor growth layer laid on the surface of the nitride semiconductor substrate. A carved region in the shape of a depressed portion may be formed on the surface of the nitride semiconductor substrate. The carved region may have an inverted tapered shape or a tapered shape in cross-section. Alternatively, or additionally, the nitride film semiconductor growth layer may include a gallium nitride film or an aluminum containing gallium nitride film where the nitride film semiconductor growth layer makes contact with the nitride semiconductor substrate. Alternatively, or additionally, the nitride film semiconductor growth layer may include a light-emitting portion formed at a location 20 ?m or more away from the carved region.Type: GrantFiled: October 23, 2007Date of Patent: May 5, 2009Assignee: Sharp Kabushiki KaishaInventors: Takeshi Kamikawa, Yoshika Kaneko
-
Publication number: 20090092166Abstract: A nitride semiconductor light-emitting device wherein a substrate or nitride semiconductor layer has a defect concentration region and a low defect density region other than the defect concentration region. A portion including the defect concentration region of the nitride semiconductor layer or substrate has a trench region deeper than the low defect density region. Thus by digging the trench in the defect concentration region, the growth detection is uniformized, and the surface planarity is improved. The uniformity of the characteristic in the wafer surface leads to improvement of the yield.Type: ApplicationFiled: December 3, 2008Publication date: April 9, 2009Inventors: Takeshi Kamikawa, Yoshika Kaneko, Kensaku Motoki
-
Publication number: 20080080578Abstract: A nitride semiconductor light-emitting device includes a nitride semiconductor substrate of which at least part of a surface is formed from a nitride semiconductor and a nitride film semiconductor growth layer laid on the surface of the nitride semiconductor substrate. A carved region in the shape of a depressed portion may be formed on the surface of the nitride semiconductor substrate. The carved region may have an inverted tapered shape or a tapered shape in cross-section. Alternatively, or additionally, the nitride film semiconductor growth layer may include a gallium nitride film or an aluminum containing gallium nitride film where the nitride film semiconductor growth layer makes contact with the nitride semiconductor substrate. Alternatively, or additionally, the nitride film semiconductor growth layer may include a light-emitting portion formed at a location 20 ?m or more away from the carved region.Type: ApplicationFiled: October 23, 2007Publication date: April 3, 2008Applicant: SHARP KABUSHIKI KAISHAInventors: Takeshi Kamikawa, Yoshika Kaneko
-
Publication number: 20070051961Abstract: A nitride semiconductor light-emitting device wherein a substrate or nitride semiconductor layer has a defect concentration region and a low defect density region other than the defect concentration region. A portion including the defect concentration region of the nitride semiconductor layer or substrate has a trench region deeper than the low defect density region. Thus by digging the trench in the defect concentration region, the growth detection is uniformized, and the surface planarity is improved. The uniformity of the characteristic in the wafer surface leads to improvement of the yield.Type: ApplicationFiled: May 27, 2004Publication date: March 8, 2007Applicants: SHARP KABUSHIKI KAISHA, SUMITOMO ELECTRIC INDUSTRIES, LTD.Inventors: Takeshi Kamikawa, Yoshika Kaneko, Kensaku Motoki
-
Patent number: 7109049Abstract: Provided is a method for fabricating a nitride semiconductor light-emitting device including a nitride semiconductor substrate having a groove and a ridge formed on the top surface thereof so as to extend in the shape of stripes and a nitride semiconductor growth layer consisting of a plurality of nitride semiconductor layers laid on top of the nitride semiconductor substrate. The method involves a step of forming a 10 ?m or more wide flat region above at least either of the groove and ridge by forming the nitride semiconductor growth layer on top of the nitride semiconductor substrate so that the height of the nitride semiconductor growth layer laid above the groove is smaller than the height of the nitride semiconductor growth layer laid above the ridge.Type: GrantFiled: February 17, 2005Date of Patent: September 19, 2006Assignee: Sharp Kabushiki KaishaInventors: Teruyoshi Takakura, Takeshi Kamikawa, Yoshika Kaneko
-
Publication number: 20060091501Abstract: Provided are a nitride semiconductor device and a manufacturing method thereof The nitride semiconductor device includes an insulating layer and a metal layer formed on a nitride semiconductor layer. The insulating layer makes contact with the nitride semiconductor layer. A separation preventing layer is formed between the insulating layer and the metal layer so as to make contact with each of these layers. The separation preventing layer has, as a main component, at least one kind of oxide of a metal selected from the group consisting of tungsten, molybdenum, chromium, titanium, nickel, hafnium, zinc, indium and yttrium.Type: ApplicationFiled: October 27, 2005Publication date: May 4, 2006Inventors: Daisuke Hanaoka, Masafumi Kondo, Susumu Ohmi, Kunihiro Takatani, Yoshika Kaneko
-
Publication number: 20050186694Abstract: Provided is a method for fabricating a nitride semiconductor light-emitting device including a nitride semiconductor substrate having a groove and a ridge formed on the top surface thereof so as to extend in the shape of stripes and a nitride semiconductor growth layer consisting of a plurality of nitride semiconductor layers laid on top of the nitride semiconductor substrate. The method involves a step of forming a 10 ?m or more wide flat region above at least either of the groove and ridge by forming the nitride semiconductor growth layer on top of the nitride semiconductor substrate so that the height of the nitride semiconductor growth layer laid above the groove is smaller than the height of the nitride semiconductor growth layer laid above the ridge.Type: ApplicationFiled: February 17, 2005Publication date: August 25, 2005Applicant: Sharp Kabushiki KaishaInventors: Teruyoshi Takakura, Takeshi Kamikawa, Yoshika Kaneko
-
Publication number: 20050151153Abstract: In a nitride semiconductor light-emitting device, and according to a method for fabricating it, a low-defect region having a defect density of 106 cm?2 or less and a carved region in the shape of a depressed portion are formed on the surface of a nitride semiconductor substrate, and the etching angle ?, which is the angle between the side surface portion of the depressed portion and an extension line of the bottom surface portion thereof as measured with the depressed portion seen in a sectional view, is in a range of 75°???140°. This prevents the development of cracks, and reduces the creep-up growth from the bottom growth portion of the carved region, thereby reducing the film thickness of the side growth portion. This makes it possible to produce, with a high yield, a nitride semiconductor laser device having a nitride semiconductor growth layer with good surface flatness.Type: ApplicationFiled: December 28, 2004Publication date: July 14, 2005Applicant: Sharp Kabushiki KaishaInventors: Takeshi Kamikawa, Yoshika Kaneko
-
Publication number: 20050025204Abstract: A nitride semiconductor laser device uses a substrate with low defect density, contains reduced strains inside a nitride semiconductor film, and thus offers a satisfactorily long useful life. On a GaN substrate (10) with a defect density as low as 106 cm?2 or less, a stripe-shaped depressed portion (16) is formed by etching. On this substrate (10), a nitride semiconductor film (11) is grown, and a laser stripe (12) is formed off the area right above the depressed portion (16). With this structure, the laser stripe (12) is free from strains, and the semiconductor laser device offers a long useful life. Moreover, the nitride semiconductor film (11) develops reduced cracks, resulting in a greatly increased yield rate.Type: ApplicationFiled: July 30, 2004Publication date: February 3, 2005Applicant: SHARP KABUSHIKI KAISHAInventors: Takeshi Kamikawa, Eiji Yamada, Masahiro Araki, Yoshika Kaneko