Patents by Inventor Yoshikazu Kawabata

Yoshikazu Kawabata has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20100047609
    Abstract: An electric resistance welded steel tube for heat treatment can be used as a highly durable material even after quenching treatment by rapid heating for hollow stabilizers or the like and a method for manufacturing such an electric resistance welded steel tube. A steel tube material, which has a composition constituted by, in mass percent, C: 0.15 to 0.40%, Si: 0.05 to 0.50%, Mn: 0.30 to 2.00%, Al: 0.01 to 0.10%, Ti: 0.001 to 0.04%, B: 0.0005 to 0.0050%, and N: 0.0010 to 0.0100% with Ti and N satisfying (N/14)<(Ti/47.9).
    Type: Application
    Filed: January 25, 2008
    Publication date: February 25, 2010
    Applicant: JFE STEEL CORPORATION
    Inventors: Yoshikazu Kawabata, Masayuki Sakaguchi, Kei Sakata
  • Publication number: 20090277544
    Abstract: A high-tensile strength welded steel tube has excellent formability and torsional fatigue endurance after being formed into cross-sectional shape and then stress-relief annealed. A steel material used has a composition which contains C, Si, Al, 1.01% to 1.99% Mn, 0.041% to 0.150% Ti, 0.017% to 0.150% Nb, P, S, N, and O such that the sum of the content of Ti and that of Nb is 0.08% or more, the content of each of C, Si, and Al being within an appropriate range, the content of each of P, S, N, and O being adjusted to a predetermined value or less.
    Type: Application
    Filed: June 19, 2007
    Publication date: November 12, 2009
    Applicant: JFE Steel Corporation, a corporation of Japan
    Inventors: Shunsuke Toyoda, Masatoshi Aratani, Yoshikazu Kawabata, Yuji Hashimoto, Koji Suzuki, Kei Sakata, Makio Gunji, Akio Sato, Tetsuro Sawaki
  • Patent number: 7591914
    Abstract: A steel pipe is produced by a method including performing diameter-reducing rolling on a steel pipe in a temperature range of from 600° C. to Ac3 with a reduction in diameter of not less than 30%, preferably after heating the steel pipe to temperatures of not lower than Ac1, the steel pipe being produced by seam-welding strip steel, or a method further including the step of performing heat treatment of holding the rolled steel pipe in a temperature range of from 600° C. to 900° C. for a time of 1 second or longer during cooling subsequent to the diameter-reducing rolling or by reheating the rolled steel pipe after the cooling.
    Type: Grant
    Filed: June 14, 2001
    Date of Patent: September 22, 2009
    Assignee: JFE Steel Corporation
    Inventors: Takaaki Toyooka, Yoshikazu Kawabata, Akira Yorifuji, Masanori Nishimori, Motoaki Itadani, Takatoshi Okabe, Masatoshi Aratani
  • Publication number: 20080011389
    Abstract: A steel pipe with good magnetic properties and a method of producing the same are proposed. Specific solutions are as follows. A steel pipe blank having a composition containing 0.5% or less C and 85% or more Fe in terms of mass percent is heated, and stretch-reducing is then performed so that the diameter decrease ratio is 15% or more and the rolling finishing temperature is (the Ar3 transformation point ?10)° C. or lower. Consequently, a structure in which the ratio of X-ray diffraction intensity obtained from the plane in which the <100> direction of crystal grains is preferentially oriented parallel to the circumference direction and the <011> direction of crystal grains is preferentially oriented parallel to the rolling direction of the steel pipe to that obtained for a three-dimensionally randomly oriented sample is 3.0 or more is formed, and the r-value is increased, thereby improving the magnetic properties of the steel pipe.
    Type: Application
    Filed: September 1, 2005
    Publication date: January 17, 2008
    Inventors: Yasuhide Ishiguro, Yoshikazu Kawabata, Kei Sakata, Masayuki Sakaguchi, Motoaki Itadani, Yasue Koyama, Masayoshi Ishida
  • Patent number: 7018488
    Abstract: A steel tube having a composition which contains: 0.05 to 0.30% of C; 1.8 to 4.0% of Mn; Si; and Al is subjected to a diameter-reducing rolling process in which the total diameter-reduction rate is no less than 20% and the temperature at which the diameter-reducing rolling process is finished is no higher than 800° C., whereby a structure constituted of martensite and/or bainite or further of ferrite is obtained as a transformation product from the deformed ?. As a result, a steel tube having tensile strength of 1000 MPa or more and excellent three-point-bending property can be obtained. The composition of the steel tube of the present invention may further include at least one type of element selected from the group consisting of Cu, Ni, Cr and Mo, or at least one type of element selected from the group consisting of Nb, V, Ti and B, or at least of one type selected from the group consisting of REM and Ca.
    Type: Grant
    Filed: June 14, 2001
    Date of Patent: March 28, 2006
    Assignee: JFE Steel Corporation
    Inventors: Takaaki Toyooka, Masanori Nishimori, Yoshikazu Kawabata, Akira Yorifuji, Motoaki Itadani, Takatoshi Okabe, Masatoshi Aratani
  • Patent number: 6755919
    Abstract: A stainless steel tube having excellent formability for secondary operation comprises: a chemical composition including not more than 0.20 mass % of C; not more than 1.5 mass % of Si; not more than 2.0 mass % of Mn; 10-18 mass % of Cr; not more than 0.03 mass % of N; or further at least one type of element selected from the group of: not more than 0.6 mass % of Cu; not more than 0.6 mass % of Ni; not more than 2.5 mass % of Mo; not more than 1.0 mass % of Nb; not more than 1.0 mass % of Ti; and not more than 1.0 mass % of V; Fe as the remainder and the inevitable impurities; and a structure constituted of ferrite or ferrite and martensite, wherein the TE value defined by the following formula exceeds 25,000 Mpa·%, TE=TS×(El+21.9) TS represents the tensile strength in the tube axial direction, and El represents the elongation in such direction.
    Type: Grant
    Filed: March 26, 2002
    Date of Patent: June 29, 2004
    Assignee: JFE Steel Corporation
    Inventors: Takaaki Toyooka, Akira Yorifuji, Makoto Kitazawa, Yoshikazu Kawabata, Motoaki Itadani, Masatoshi Aratani, Takatoshi Okabe
  • Patent number: 6749954
    Abstract: A welded steel pipe is formed by heating or soaking an untreated welded steel pipe having a steel composition containing, on the basis of mass percent: about 0.03% to about 0.2% C, about 2.0% or less of Si, not less than about 1.0% to about 1.5% Mn, about 0.1% or less of P, about 0.01% or less of S, about 1.0% or less of Cr, about 0.1% or less of Al, about 0.1% or less of Nb, about 0.1% or less of Ti, about 0.1% or less of V, and about 0.01% or less of N; and by reduction-rolling the treated steel pipe at a cumulative reduction rate of at least about 35% and a final rolling temperature of about 500° C. to about 900° C. The welded steel pipe exhibits excellent hydroformability, i.e., has a tensile strength of at least about 590 MPa and an n×r product of at least about 0.22. The treated steel pipe is preferably reduction-rolled at a cumulative reduction rate of at least about 20% below the Ar3 transformation point.
    Type: Grant
    Filed: May 31, 2002
    Date of Patent: June 15, 2004
    Assignee: JFE Steel Corporation
    Inventors: Takaaki Toyooka, Masatoshi Aratani, Yoshikazu Kawabata, Yuji Hashimoto, Akira Yorifuji, Takatoshi Okabe, Takuya Nagahama, Mitsuo Kimura
  • Publication number: 20040099355
    Abstract: The invention provides a high-carbon steel pipe having superior cold workability and induction hardenability, and a method of producing the steel pipe. The method comprises the steps of heating or soaking a base steel pipe having a composition containing C: 0.3 to 0.8%, Si: not more than 2%, and Mn: not more than 3%, and then carrying out reducing rolling on the base steel pipe at least in the temperature range of (Ac1 transformation point—50° C.) to Ac1 transformation point with an accumulated reduction in diameter of not less than 30%. A structure in which the grain size of cementite is not greater than 1.0 &mgr;m is obtained, thus resulting in improved cold workability and induction hardenability.
    Type: Application
    Filed: November 19, 2003
    Publication date: May 27, 2004
    Applicant: JFE Steel Corporation, a corporation of Japan
    Inventors: Takaaki Toyooka, Yoshikazu Kawabata, Akira Yorifuji, Masanori Nishimori, Motoaki Itadani, Takatoshi Okabe, Masatoshi Aratani, Yasue Koyama
  • Patent number: 6736910
    Abstract: The invention provides a high-carbon steel pipe having superior cold workability and induction hardenability, and a method of producing the steel pipe. The method comprises the steps of heating or soaking a base steel pipe having a composition containing C: 0.3 to 0.8%, Si: not more than 2%, and Mn: not more than 3%, and then carrying out reducing rolling on the base steel pipe at least in the temperature range of (Ac1, transformation point −50° C.) to Ac1, transformation point with an accumulated reduction in diameter of not less than 30%. A structure in which the grain size of cementite is not greater than 1.0 &mgr;m is obtained, thus resulting in improved cold workability and induction hardenability.
    Type: Grant
    Filed: January 29, 2002
    Date of Patent: May 18, 2004
    Assignee: JFE Steel Corporation
    Inventors: Takaaki Toyooka, Yoshikazu Kawabata, Akira Yorifuji, Masanori Nishimori, Motoaki Itadani, Takatoshi Okabe, Masatoshi Aratani, Yasue Koyama
  • Patent number: 6723453
    Abstract: A welded steel pipe is formed by heating or soaking an untreated welded steel pipe having a steel composition containing, on the basis of mass percent: about 0.05% to about 0.2% C; about 0.2% or less of Si; about 1.5% or less of Mn; about 0.1% or less of P; about 0.01% or less of S; about 0.1% or less of Al; and about 0.01% or less of N; and by reduction-rolling the treated steel pipe at a cumulative reduction rate of at least about 35% and a final rolling temperature of about 500° C. to about 900° C. The welded steel pipe exhibits excellent hydroformability, i.e., has a tensile strength of at least about 400 MPa and an n×r product of at least about 0.22. The treated steel pipe is preferably reduction-rolled at a cumulative reduction rate of at least about 20% below the Ar3 transformation point. The welded steel pipe is suitable for forming structural components.
    Type: Grant
    Filed: May 31, 2002
    Date of Patent: April 20, 2004
    Assignee: JFE Steel Corporation
    Inventors: Takaaki Toyooka, Masatoshi Aratani, Yoshikazu Kawabata, Yuji Hashimoto, Akira Yorifuji, Takatoshi Okabe, Takuya Nagahama, Mitsuo Kimura
  • Patent number: 6682829
    Abstract: A welded steel pipe is formed by heating or soaking an untreated welded steel pipe having a steel composition comprising, on the basis of mass percent: about 0.05% to about 0.3% C; about 2.0% or less of Si; more than about 1.5% to about 5.0% Mn; about 0.1% or less of P; about 0.01% or less of S; about 0.1% or less of Cr; about 0.1% or less of Al; about 0.1% or less of Nb; about 0.3% or less of Ti; and about 0.01% or less of N; and by diameter-reduction-rolling the treated steel pipe at a accumulated diameter reduction rate of at least about 35% and a finish rolling temperature of about 500° C. to about 900° C. The welded steel pipe exhibits excellent hydroformability, i.e., has a tensile strength of about 780 MPa or more and a n×r product of at least about 0.15. The treated steel pipe is preferably diameter-reduction-rolled at a accumulated diameter reduction rate of at least about 20% below the Ar3 transformation point.
    Type: Grant
    Filed: May 31, 2002
    Date of Patent: January 27, 2004
    Assignee: JFE Steel Corporation
    Inventors: Takaaki Toyooka, Masatoshi Aratani, Yoshikazu Kawabata, Yuji Hashimoto, Akira Yorifuji, Takatoshi Okabe, Takuya Nagahama, Mitsuo Kimura
  • Publication number: 20030145913
    Abstract: The invention provides a steel pipe being superior in workability, particularly in bending workability, in which an r-value in the axial direction of the pipe in a portion where melting or transformation of a steel material has occurred during seam welding is as high as comparable to that in a portion where melting or transformation of the steel material has not occurred, and a method of producing the steel pipe. In the high-workability steel pipe, an r-value in the longitudinal direction is not less than 1.2, more preferably not less than 1.6, over an entire area in the circumferential direction, including a seamed portion. The steel pipe is produced by a method comprising the step of performing diameter-reducing rolling on a steel pipe in a temperature range of from 600° C.
    Type: Application
    Filed: October 30, 2002
    Publication date: August 7, 2003
    Inventors: Takaaki Toyooka, Yoshikazu Kawabata, Akira Yorifuji, Masanori Nishimori, Motoaki Itadani, Takatoshi Okabe, Masatoshi Aratani
  • Publication number: 20030057695
    Abstract: A stainless steel tube for a automobile structure member having excellent formability for secondary operation comprises: a chemical composition including not more than 0.20 mass % of C; not more than 1.5 mass % of Si; not more than 2.0 mass % of Mn; 10-18 mass % of Cr; not more than 0.03 mass % of N; or further at least one type of element selected from the group of: not more than 0.6 mass % of Cu; not more than 0.6 mass % of Ni; not more than 2.5 mass % of Mo; not more than 1.0 mass % of Nb; not more than 1.0 mass % of Ti; and not more than 1.0 mass % of V; Fe as the remainder and the inevitable impurities; and a structure which is constituted of ferrite or ferrite and martensite, wherein the TE value defined by the following formula (1) exceeds 25,000 MPa·%.
    Type: Application
    Filed: March 26, 2002
    Publication date: March 27, 2003
    Inventors: Takaaki Toyooka, Akira Yorifuji, Makoto Kitazawa, Yoshikazu Kawabata, Motoaki Itadani, Masatoshi Aratani, Takatoshi Okabe
  • Publication number: 20030051782
    Abstract: A steel tube having a composition which contains: 0.05 to 0.30% of C; 1.8 to 4.0% of Mn; Si; and Al is subjected to a diameter-reducing rolling process in which the total diameter-reduction rate is no less than 20% and the temperature at which the diameter-reducing rolling process is finished is no higher than 800 ° C., whereby a structure constituted of martensite and/or bainite or further of ferrite is obtained as a transformation product from the deformed &ggr;. As a result, a steel tube having tensile strength of 1000 MPa or more and excellent three-point-bending property can be obtained. The composition of the steel tube of the present invention may further include at least one type of element selected from the group consisting of Cu, Ni, Cr and Mo, or at least one type of element selected from the group consisting of Nb, V, Ti and B, or at least of one type selected from the group consisting of REM and Ca.
    Type: Application
    Filed: August 26, 2002
    Publication date: March 20, 2003
    Inventors: Takaaki Toyooka, Masanori Nishimori, Yoshikazu Kawabata, Akira Yorifuji, Motoaki Itadani, Takatoshi Okabe, Masatoshi Aratani
  • Publication number: 20030044638
    Abstract: A welded steel pipe is formed by heating or soaking an untreated welded steel pipe having a steel composition comprising, on the basis of mass percent: about 0.05% to about 0.3% C; about 2.0% or less of Si; more than about 1.5% to about 5.0% Mn; about 0.1% or less of P; about 0.01% or less of S; about 0.1% or less of Cr; about 0.1% or less of Al; about 0.1% or less of Nb; about 0.3% or less of Ti; and about 0.01% or less of N; and by diameter-reduction-rolling the treated steel pipe at a accumulated diameter reduction rate of at least about 35% and a finish rolling temperature of about 500° C. to about 900° C. The welded steel pipe exhibits excellent hydroformability, i.e., has a tensile strength of about 780 MPa or more and a n×r product of at least about 0.15. The treated steel pipe is preferably diameter-reduction-rolled at a accumulated diameter reduction rate of at least about 20% below the Ar3 transformation point.
    Type: Application
    Filed: May 31, 2002
    Publication date: March 6, 2003
    Applicant: KAWASAKI STEEL CORPORATION
    Inventors: Takaaki Toyooka, Masatoshi Aratani, Yoshikazu Kawabata, Yuji Hashimoto, Akira Yorifuji, Takatoshi Okabe, Takuya Nagahama, Mitsuo Kimura
  • Publication number: 20030008171
    Abstract: A welded steel pipe is formed by heating or soaking an untreated welded steel pipe having a steel composition containing, on the basis of mass percent: about 0.03% to about 0.2% C, about 2.0% or less of Si, not less than about 1.0% to about 1.5% Mn, about 0.1% or less of P, about 0.01% or less of S, about 1.0% or less of Cr, about 0.1% or less of Al, about 0.1% or less of Nb, about 0.1% or less of Ti, about 0.1% or less of V, and about 0.01% or less of N; and by reduction-rolling the treated steel pipe at a cumulative reduction rate of at least about 35% and a final rolling temperature of about 500° C. to about 900° C. The welded steel pipe exhibits excellent hydroformability, i.e., has a tensile strength of at least about 590 MPa and an n×r product of at least about 0.22. The treated steel pipe is preferably reduction-rolled at a cumulative reduction rate of at least about 20% below the Ar3 transformation point.
    Type: Application
    Filed: May 31, 2002
    Publication date: January 9, 2003
    Applicant: KAWASAKI STELL CORPORATION
    Inventors: Takaaki Toyooka, Masatoshi Aratani, Yoshikazu Kawabata, Yuji Hashimoto, Akira Yorifuji, Takatoshi Okabe, Takuya Nagahama, Mitsuo Kimura
  • Publication number: 20020192495
    Abstract: A welded steel pipe is formed by heating or soaking an untreated welded steel pipe having a steel composition containing, on the basis of mass percent: about 0.05 % to about 0.2% C; about 0.2% or less of Si; about 1.5% or less of Mn; about 0.1% or less of P; about 0.01% or less of S; about 0.1% or less of Al; and about 0.01 % or less of N; and by reduction-rolling the treated steel pipe at a cumulative reduction rate of at least about 35% and a final rolling temperature of about 500° C. to about 900° C. The welded steel pipe exhibits excellent hydroformability, i.e., has a tensile strength of at least about 400 MPa and an n×r product of at least about 0.22. The treated steel pipe is preferably reduction-rolled at a cumulative reduction rate of at least about 20% below the Ar3 transformation point. The welded steel pipe is suitable for forming structural components.
    Type: Application
    Filed: May 31, 2002
    Publication date: December 19, 2002
    Applicant: Kawasaki Steel Corporation
    Inventors: Takaaki Toyooka, Masatoshi Aratani, Yoshikazu Kawabata, Yuji Hashimoto, Akira Yorifuji, Takatoshi Okabe, Takuya Nagahama, Mitsuo Kimura
  • Publication number: 20020153070
    Abstract: The invention provides a high-carbon steel pipe having superior cold workability and induction hardenability, and a method of producing the steel pipe. The method comprises the steps of heating or soaking a base steel pipe having a composition containing C: 0.3 to 0.8%, Si: not more than 2%, and Mn: not more than 3%, and then carrying out reducing rolling on the base steel pipe at least in the temperature range of (Ac1, transformation point −50° C.) to Ac1, transformation point with an accumulated reduction in diameter of not less than 30%. A structure in which the grain size of cementite is not greater than 1.0 &mgr;m is obtained, thus resulting in improved cold workability and induction hardenability.
    Type: Application
    Filed: January 29, 2002
    Publication date: October 24, 2002
    Inventors: Takaaki Toyooka, Yoshikazu Kawabata, Akira Yorifuji, Masanori Nishimori, Motoaki Itadani, Takatoshi Okabe, Masatoshi Aratani, Yasue Koyama
  • Patent number: 6217680
    Abstract: A steel slab having a composition that comprises at most 0.008% by weight of C, at most 0.5% by weight of Si, at most 1.0% by weight of Mn, at most 0.15% by weight of P, at most 0.02% by weight of S, from 0.01 to 0.10% by weight of Al, at most 0.008% by weight of N, from 0.035 to 0.20% by weight of Ti, and from 0.001 to 0.015% by weight of Nb, with a balance of Fe and inevitable impurities, in which those C, S, N, Ti and Nb satisfy the following condition: 1.2(C/12+N/14+S/32)<(Ti/48+Nb/93), is subjected to rough hot-rolling to a reduction ratio of not lower than 85%, at a temperature falling between the Ar3 transformation point of the steel and 950° C., then to finishing hot-rolling to a reduction ratio of not lower than 65%, at a temperature falling between. 600° C. and the Ar3 transformation point of the steel, while being lubricated, to thereby have a mean shear strain of not larger than 0.06, then pickled, pre-annealed at a temperature falling between 700 and 920° C.
    Type: Grant
    Filed: March 15, 1999
    Date of Patent: April 17, 2001
    Assignee: Kawasaki Steel Corporation
    Inventors: Yoshikazu Kawabata, Kaneharu Okuda, Kei Sakata, Takashi Obara, Atsushi Ogino
  • Patent number: 6103394
    Abstract: A thin steel sheet having excellent rectangular drawability is produced by completing roughing rolling of steel containing C: 0.02 wt % or less, Si: 0.5 wt % or less, Mn: 1.0 wt % or less, P: 0.15 wt % or less, S: 0.02 wt % or less, Al: 0.01 to 0.10 wt %, N: 0.008 wt % or less, at least one of Ti: 0.001 to 0.20 wt % and Nb: 0.001 to 0.15 wt %, the balance comprising Fe, and inevitable impurities, in the temperature region of 950.degree. C. to the Ar.sub.3 transformation temperature: performing finish rolling at a reduction of over 70% under lubrication in the temperature region of the Ar.sub.3 transformation temperature to 500.degree. C.; pickling the sheet; annealing the resultant hot rolled sheet under conditions which satisfy the equations (1) and (2) below:(T+273) (20+log t).gtoreq.2.50.times.10.sup.4 (1)745.ltoreq.T.ltoreq.920 (2)wherein T: hot rolled sheet annealing temperature (.degree. C.
    Type: Grant
    Filed: March 3, 1998
    Date of Patent: August 15, 2000
    Assignee: Kawasaki Steel Corporation
    Inventors: Kaneharu Okuda, Yoshikazu Kawabata, Kei Sakata, Takaaki Hira, Atsushi Ogino, Takashi Obara