Patents by Inventor Yoshikazu Noguchi

Yoshikazu Noguchi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10373764
    Abstract: A method for producing agglomerated tantalum particles, comprising: a step for grinding secondary tantalum particles, which are obtained by reducing a tantalum salt, and adding water thereto to give a water-containing mass; a step for drying said water-containing mass to give a dry mass; a step for sieving said dry mass to give spherical particles; and a step for heating said spherical particles. A mixed tantalum powder comprising a mixture of agglomerated tantalum particles (X) with agglomerated tantalum particles (Y), wherein said agglomerated tantalum particles (X) show a cumulative percentage of particles with particle size of 3 ?m or less of 5 mass % or less after 25 W ultrasonic radiation for 10 min, while said agglomerated tantalum particles (Y) show a cumulative percentage of particles with particle size of 3 ?m or less of 10 mass % or more after 25 W ultrasonic radiation for 10 min.
    Type: Grant
    Filed: October 25, 2017
    Date of Patent: August 6, 2019
    Assignee: Global Advanced Metals USA, Inc.
    Inventors: Ryosuke Matsuoka, Eiji Kataoka, Yoshikazu Noguchi, John Koenitzer, Sridhar Venigalla
  • Publication number: 20180047516
    Abstract: A method for producing agglomerated tantalum particles, comprising: a step for grinding secondary tantalum particles, which are obtained by reducing a tantalum salt, and adding water thereto to give a water-containing mass; a step for drying said water-containing mass to give a dry mass; a step for sieving said dry mass to give spherical particles; and a step for heating said spherical particles. A mixed tantalum powder comprising a mixture of agglomerated tantalum particles (X) with agglomerated tantalum particles (Y), wherein said agglomerated tantalum particles (X) show a cumulative percentage of particles with particle size of 3 ?m or less of 5 mass % or less after 25 W ultrasonic radiation for 10 min, while said agglomerated tantalum particles (Y) show a cumulative percentage of particles with particle size of 3 ?m or less of 10 mass % or more after 25 W ultrasonic radiation for 10 min.
    Type: Application
    Filed: October 25, 2017
    Publication date: February 15, 2018
    Applicant: Global Advanced Metals USA, Inc.
    Inventors: Ryosuke Matsuoka, Eiji Kataoka, Yoshikazu Noguchi, John Koenitzer, Sridhar Venigalla
  • Patent number: 9831041
    Abstract: A method for producing agglomerated tantalum particles, comprising: a step for grinding secondary tantalum particles, which are obtained by reducing a tantalum salt, and adding water thereto to give a water-containing mass; a step for drying said water-containing mass to give a dry mass; a step for sieving said dry mass to give spherical particles; and a step for heating said spherical particles. A mixed tantalum powder comprising a mixture of agglomerated tantalum particles (X) with agglomerated tantalum particles (Y), wherein said agglomerated tantalum particles (X) show a cumulative percentage of particles with particle size of 3 ?m or less of 5 mass % or less after 25 W ultrasonic radiation for 10 min, while said agglomerated tantalum particles (Y) show a cumulative percentage of particles with particle size of 3 ?m or less of 10 mass % or more after 25 W ultrasonic radiation for 10 min.
    Type: Grant
    Filed: November 11, 2011
    Date of Patent: November 28, 2017
    Assignee: Global Advanced Metals USA, Inc.
    Inventors: Ryosuke Matsuoka, Eiji Kataoka, Yoshikazu Noguchi, John Koenitzer, Sridhar Venigalla
  • Publication number: 20120081840
    Abstract: A method for producing agglomerated tantalum particles, comprising: a step for grinding secondary tantalum particles, which are obtained by reducing a tantalum salt, and adding water thereto to give a water-containing mass; a step for drying said water-containing mass to give a dry mass; a step for sieving said dry mass to give spherical particles; and a step for heating said spherical particles. A mixed tantalum powder comprising a mixture of agglomerated tantalum particles (X) with agglomerated tantalum particles (Y), wherein said agglomerated tantalum particles (X) show a cumulative percentage of particles with particle size of 3 ?m or less of 5 mass % or less after 25 W ultrasonic radiation for 10 min, while said agglomerated tantalum particles (Y) show a cumulative percentage of particles with particle size of 3 ?m or less of 10 mass % or more after 25 W ultrasonic radiation for 10 min.
    Type: Application
    Filed: November 11, 2011
    Publication date: April 5, 2012
    Applicant: CABOT CORPORATION
    Inventors: Ryosuke Matsuoka, Eiji Kataoka, Yoshikazu Noguchi, John Koenitzer, Sridhar Venigalla
  • Patent number: 7679885
    Abstract: Tantalum powder capable of providing a small-sized tantalum electrolytic capacitor while maintaining capacity is described. Tantalum powder in the present invention can be characterized in that the CV value is from 200,000 to 800,000 ?FV/g, when measured by the following measuring method. Pellets are produced by forming tantalum powder such that the density is 4.5 g/cm3, then the pellets are chemically converted in a phosphoric acid aqueous solution of concentration 0.1 vol. % at a voltage of 6V and a current of 90 mA/g, and the chemically converted pellets are used as measuring samples to measure the CV value in a sulfuric acid aqueous solution of concentration 30.5 vol. % at a temperature of 25° C. under a frequency of 120 Hz and a voltage of 1.5V.
    Type: Grant
    Filed: October 30, 2008
    Date of Patent: March 16, 2010
    Assignee: Cabot Corporation
    Inventors: Yujiro Mizusaki, Hitoshi Iijima, Yoshikazu Noguchi
  • Publication number: 20090067121
    Abstract: Tantalum powder capable of providing a small-sized tantalum electrolytic capacitor while maintaining capacity is described. Tantalum powder in the present invention can be characterized in that the CV value is from 200,000 to 800,000 ?FV/g, when measured by the following measuring method. Pellets are produced by forming tantalum powder such that the density is 4.5 g/cm3, then the pellets are chemically converted in a phosphoric acid aqueous solution of concentration 0.1 vol. % at a voltage of 6V and a current of 90 mA/g, and the chemically converted pellets are used as measuring samples to measure the CV value in a sulfuric acid aqueous solution of concentration 30.5 vol. % at a temperature of 25° C. under a frequency of 120 Hz and a voltage of 1.5V.
    Type: Application
    Filed: October 30, 2008
    Publication date: March 12, 2009
    Applicant: CABOT CORPORATION
    Inventors: Yujiro Mizusaki, Hitoshi Iijima, Yoshikazu Noguchi
  • Patent number: 7473294
    Abstract: An object of the present invention is to provide nitrogen-containing metallic powder at high productivity, which powder contains a metal such as niobium or tantalum containing nitrogen uniformly, and enables production of an anode electrode that has high specific capacitance and low leakage current and that exhibits excellent reliability for a prolonged period of time. There is provided nitrogen-containing metallic powder which is a solid solution containing 50-20,000 ppm nitrogen, in which the metal that constitutes the metallic powder is niobium or tantalum. The nitrogen-containing metallic powder is produced through the process in which while a metallic compound is reduced with a reducing agent, a nitrogen-containing gas is introduced into a reaction system to thereby form metal, and nitrogen is simultaneously incorporated into metal.
    Type: Grant
    Filed: June 5, 2006
    Date of Patent: January 6, 2009
    Assignee: Cabot Supermetals K.K.
    Inventors: Yukio Oda, Tomoo Izumi, Yoshikazu Noguchi
  • Publication number: 20060230877
    Abstract: An object of the present invention is to provide nitrogen-containing metallic powder at high productivity, which powder contains a metal such as niobium or tantalum containing nitrogen uniformly, and enables production of an anode electrode that has high specific capacitance and low leakage current and that exhibits excellent reliability for a prolonged period of time. There is provided nitrogen-containing metallic powder which is a solid solution containing 50-20,000 ppm nitrogen, in which the metal that constitutes the metallic powder is niobium or tantalum. The nitrogen-containing metallic powder is produced through the process in which while a metallic compound is reduced with a reducing agent, a nitrogen-containing gas is introduced into a reaction system to thereby form metal, and nitrogen is simultaneously incorporated into metal.
    Type: Application
    Filed: June 5, 2006
    Publication date: October 19, 2006
    Inventors: Yukio Oda, Tomoo Izumi, Yoshikazu Noguchi
  • Patent number: 7066975
    Abstract: An object of the present invention is to provide nitrogen-containing metallic powder at high productivity, which powder contains a metal such as niobium or tantalum containing nitrogen uniformly, and enables production of an anode electrode that has high specific capacitance and low leakage current and that exhibits excellent reliability for a prolonged period of time. There is provided nitrogen-containing metallic powder which is a solid solution containing 50–20,000 ppm nitrogen, in which the metal that constitutes the metallic powder is niobium or tantalum. The nitrogen-containing metallic powder is produced through the process in which while a metallic compound is reduced with a reducing agent, a nitrogen-containing gas is introduced into a reaction system to thereby form metal, and nitrogen is simultaneously incorporated into metal.
    Type: Grant
    Filed: June 20, 2002
    Date of Patent: June 27, 2006
    Assignee: Cabot Supermetals, K.K.
    Inventors: Yukio Oda, Tomoo Izumi, Yoshikazu Noguchi
  • Publication number: 20030174459
    Abstract: An object of the present invention is to provide a tantalum sintered body which has high performance such as a reduced leakage current and an improved resistance to lowering of the capacitance, depending on a size of a desired capacitor. In order to achieve the object, the present invention provide a production method of a tantalum sintered body for an electrolytic capacitor comprising the steps of: a molding step (I) in which a tantalum powder having a bulk density of 0.50 to 1.85 g/cm3, which is obtained by heat treating a deoxidized tantalum powder in an inert gas atmosphere at a high temperature and crushing, is molded so that the density is 4.5 to 7.
    Type: Application
    Filed: February 5, 2003
    Publication date: September 18, 2003
    Inventors: Yoshikazu Noguchi, Tomoo Izumi
  • Publication number: 20020152842
    Abstract: An object of the present invention is to provide nitrogen-containing metallic powder at high productivity, which powder contains a metal such as niobium or tantalum containing nitrogen uniformly, and enables production of an anode electrode that has high specific capacitance and low leakage current and that exhibits excellent reliability for a prolonged period of time. There is provided nitrogen-containing metallic powder which is a solid solution containing 50-20,000 ppm nitrogen, in which the metal that constitutes the metallic powder is niobium or tantalum. The nitrogen-containing metallic powder is produced through the process in which while a metallic compound is reduced with a reducing agent, a nitrogen-containing gas is introduced into a reaction system to thereby form metal, and nitrogen is simultaneously incorporated into metal.
    Type: Application
    Filed: June 20, 2002
    Publication date: October 24, 2002
    Applicant: CABOT SUPERMETALS K.K.
    Inventors: Yukio Oda, Tomoo Izumi, Yoshikazu Noguchi
  • Patent number: 6432161
    Abstract: An object of the present invention is to provide nitrogen-containing metallic powder at high productivity, which powder contains a metal such as niobium or tantalum containing nitrogen uniformly, and enables production of an anode electrode that has high specific capacitance and low leakage current and that exhibits excellent reliability for a prolonged period of time. There is provided nitrogen-containing metallic powder which is a solid solution containing 50-20,000 ppm nitrogen, in which the metal that constitutes the metallic powder is niobium or tantalum. The nitrogen-containing metallic powder is produced through the process in which while a metallic compound is reduced with a reducing agent, a nitrogen-containing gas is introduced into a reaction system to thereby form metal, and nitrogen is simultaneously incorporated into metal.
    Type: Grant
    Filed: July 26, 2000
    Date of Patent: August 13, 2002
    Assignee: Cabot SuperMetals K.K.
    Inventors: Yukio Oda, Tomoo Izumi, Yoshikazu Noguchi
  • Patent number: 4648373
    Abstract: An intake manifold (2) for an internal combustion engine equipped with an exhaust gas recirculation (EGR) system for recirculating a part of the exhaust gas to the intake system, having a V-shaped rib (13) formed on the inner surface thereof with the vertex (13a) directed upstream with respect to the flow of the intake air. The V-shaped rib is positioned upstream of the EGR gas outlet (10) of the EGR system so that oil contained in blow-by gas supplied by a positive crankcase ventilation (PCV) system or charged-air supplied by a turbocharger into the intake manifold (2) does not flow into the EGR gas outlet (10), but flows away from the EGR gas outlet (10). Therefore, the deposition of sludge around the EGR gas outlet (10) is prevented and a sufficient EGR rate is secured.
    Type: Grant
    Filed: August 19, 1985
    Date of Patent: March 10, 1987
    Assignees: Toyota Jidosha Kabushiki Kaisha, Kabushiki Kaisha Toyoda Jidoshokki Seisakusho
    Inventors: Yoshikazu Noguchi, Tatsuhisa Yokoi, Eisaku Takeya, Hideyuki Osawa
  • Patent number: 4099508
    Abstract: An ignition system for an internal combustion engine comprising a battery, an ignition coil having a primary and secondary winding, a variable impedance element whose impedance is temperature dependent coupled between the primary of the ignition coil and the battery, and a set of distributor points coupled between the primary and secondary windings of the ignition coil and ground. The variable impedance element prevents deterioration of the ignition efficiency as the temperature of the ignition coil goes up, and can also prevent the temperature of the ignition coil from raising to a point wherein the ignition coil is damaged.
    Type: Grant
    Filed: May 20, 1976
    Date of Patent: July 11, 1978
    Assignee: Toyota Jidosha Kogyo Kabushiki Kaisha
    Inventors: Yoshikazu Noguchi, Katsuyuki Senda, Mamoru Kobashi