Patents by Inventor Yoshiki Miura

Yoshiki Miura has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240101127
    Abstract: A driving assistance device includes a memory and a processor. The processor acquires travel information including acceleration of a moving body. The processor presents, to the moving body, information regarding cargo collapse on the moving body that is specified on the basis of a distribution of the acceleration of the moving body in multiple axes on the basis of the travel information.
    Type: Application
    Filed: February 18, 2021
    Publication date: March 28, 2024
    Inventors: Yasunori SUZUKI, Akira SHIMIZU, Yasuo SHIROSAKI, Yoshiki MIURA, Norihiko FUKUSHIMA, Takanori SUDO, Isao TAKAHASHI
  • Patent number: 8471264
    Abstract: Assuming that r (m) represents the radius of a GaN substrate, t1 (m) represents the thickness of the GaN substrate, h1 (m) represents a warp of the GaN substrate before formation of an epitaxialwafer, t2 (m) represents the thickness of an AlxGa(1-X)N layer, h2 (m) represents a warp of the epitaxialwafer, a1 represents the lattice constant of GaN and a2 represents the lattice constant of AlN, the value t1 found by the following expression is decided as the minimum thickness (t1) of the GaN substrate: (1.5×1011×t13+1.2×1011×t23)×{1/(1.5×1011×t1)+1/(1.2×1011×t2)}/{15.96×x×(1?a2/a1)}×(t1+t2)+(t1×t2)/{5.32×x×(1?a2/a1)}?(r2+h2)/2h=0 A GaN substrate having a thickness of at least this minimum thickness (t1) and less than 400 ?m is formed.
    Type: Grant
    Filed: March 16, 2011
    Date of Patent: June 25, 2013
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Fumitake Nakanishi, Yoshiki Miura
  • Patent number: 8143140
    Abstract: There is provided a method of producing a thin GaN film-joined substrate, including the steps of: joining on a GaN bulk crystalline body a substrate different in type or chemical composition from GaN; and dividing the GaN bulk crystalline body at a plane having a distance of at least 0.1 ?m and at most 100 ?m from an interface thereof with the substrate different in type, to provide a thin film of GaN on the substrate different in type, wherein the GaN bulk crystalline body had a surface joined to the substrate different in type, that has a maximum surface roughness Rmax of at most 20 ?m. Thus a GaN-based semiconductor device including a thin GaN film-joined substrate including a substrate different in type and a thin film of GaN joined firmly on the substrate different in type, and at least one GaN-based semiconductor layer deposited on the thin film of GaN, can be fabricated at low cost.
    Type: Grant
    Filed: April 22, 2010
    Date of Patent: March 27, 2012
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Hitoshi Kasai, Akihiro Hachigo, Yoshiki Miura, Katsushi Akita
  • Publication number: 20110163325
    Abstract: Assuming that r (m) represents the radius of a GaN substrate, t1 (m) represents the thickness of the GaN substrate, h1 (m) represents a warp of the GaN substrate before formation of an epitaxialwafer, t2 (m) represents the thickness of an AlxGa(1-X)N layer, h2 (m) represents a warp of the epitaxialwafer, a1 represents the lattice constant of GaN and a2 represents the lattice constant of AlN, the value t1 found by the following expression is decided as the minimum thickness (t1) of the GaN substrate: (1.5×1011×t13+1.2×1011×t23)×{1/(1.5×1011×t1)+1/(1.2×1011×t2)}/{15.96×x×(1?a2/a1)}×(t1+t2)+(t1×t2)/{5.32×x×(1?a2/a1)}?(r2+h2)/2h=0 A GaN substrate having a thickness of at least this minimum thickness (t1) and less than 400 ?m is formed.
    Type: Application
    Filed: March 16, 2011
    Publication date: July 7, 2011
    Inventors: Fumitake NAKANISHI, Yoshiki Miura
  • Patent number: 7932114
    Abstract: Assuming that r (m) represents the radius of a GaN substrate, t1 (m) represents the thickness of the GaN substrate, h1 (m) represents a warp of the GaN substrate before formation of an epitaxialwafer, t2 (m) represents the thickness of an AlxGa(1-x)N layer, h2 (m) represents a warp of the epitaxialwafer, a1 represents the lattice constant of GaN and a2 represents the lattice constant of AlN, the value t1 found by the following expression is decided as the minimum thickness (t1) of the GaN substrate: (1.5×1011×t13+1.2×1011×t23)×{1/(1.5×1011×t1)+1/(1.2×1011×t2)}/{15.96×x×(1?a2/a1)}×(t1+t2)+(t1×t2)/{5.32×x×(1?a2/a1)}?(r2+h2)/2h=0 A GaN substrate having a thickness of at least this minimum thickness (t1) and less than 400 ?m is formed.
    Type: Grant
    Filed: October 3, 2008
    Date of Patent: April 26, 2011
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Fumitake Nakanishi, Yoshiki Miura
  • Patent number: 7915635
    Abstract: For a semiconductor laser, a stacked member comprising an active layer is formed on the surface of a GaN single-crystal substrate, a defect aggregation portion is formed on the rear face of the GaN single-crystal substrate, and an electrode is formed so as to be electrically connected to the defect aggregation portion on the rear face. The defect aggregation portion of this semiconductor laser has numerous crystal defects, and so the carrier concentration is high, and the electrical resistivity is lowered significantly. For this reason, in a semiconductor laser of this invention in which an electrode is formed on this defect aggregation portion, an Ohmic contact can easily be obtained between the GaN single-crystal substrate and the electrode, and by this means a lowered driving voltage is realized.
    Type: Grant
    Filed: May 22, 2008
    Date of Patent: March 29, 2011
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Katsushi Akita, Hitoshi Kasai, Yoshiki Miura, Kensaku Motoki
  • Patent number: 7915149
    Abstract: There is disclosed a method for forming a gallium nitride layer of which resistivity is 1×106 ?·cm or more, including steps of: forming a gallium nitride layer containing iron on a substrate; and heating said gallium nitride layer formed on said substrate.
    Type: Grant
    Filed: June 10, 2008
    Date of Patent: March 29, 2011
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Seiji Nakahata, Fumitaka Sato, Yoshiki Miura, Akinori Koukitu, Yoshinao Kumagai
  • Patent number: 7843040
    Abstract: A method of forming an iron-doped gallium nitride for a semi-insulating GaN substrate is provided. A substrate (1), such as a (0001)-cut sapphire substrate, is placed on a susceptor of a metalorganic hydrogen chloride vapor phase apparatus (11). Next, gaseous iron compound GFe from a source (13) for an iron compound, such as ferrocene, and hydrogen chloride gas G1HCl from a hydrogen chloride source (15) are caused to react with each other in a mixing container (16) to generate gas GFeComp of an iron-containing reaction product, such as iron chloride (FeCl2). In association with the generation, the iron-containing reaction product GFeComp, first substance gas GN containing elemental nitrogen from a nitrogen source (17), and second substance gas GGa containing elemental gallium are supplied to a reaction tube (21) to form iron-doped gallium nitride (23) on the substrate (1).
    Type: Grant
    Filed: December 2, 2008
    Date of Patent: November 30, 2010
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Akinori Koukitu, Yoshinao Kumagai, Yoshiki Miura, Kikurou Takemoto, Fumitaka Sato
  • Patent number: 7816238
    Abstract: A GaN substrate having a large diameter of two inches or more by which a semiconductor device such as a light emitting element with improved characteristics such as luminance efficiency, an operating life and the like can be obtained at low cost industrially, a substrate having an epitaxial layer formed on the GaN substrate, a semiconductor device, and a method of manufacturing the GaN substrate are provided. A GaN substrate has a main surface and contains a low-defect crystal region and a defect concentrated region adjacent to low-defect crystal region. Low-defect crystal region and defect concentrated region extend from the main surface to a back surface positioned on the opposite side of the main surface. A plane direction [0001] is inclined in an off-angle direction with respect to a normal vector of the main surface.
    Type: Grant
    Filed: June 11, 2008
    Date of Patent: October 19, 2010
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Hideki Osada, Hitoshi Kasai, Keiji Ishibashi, Seiji Nakahata, Takashi Kyono, Katsushi Akita, Yoshiki Miura
  • Publication number: 20100210089
    Abstract: There is provided a method of producing a thin GaN film-joined substrate, including the steps of: joining on a GaN bulk crystalline body a substrate different in type or chemical composition from GaN; and dividing the GaN bulk crystalline body at a plane having a distance of at least 0.1 ?m and at most 100 ?m from an interface thereof with the substrate different in type, to provide a thin film of GaN on the substrate different in type, wherein the GaN bulk crystalline body had a surface joined to the substrate different in type, that has a maximum surface roughness Rmax of at most 20 ?m. Thus a GaN-based semiconductor device including a thin GaN film-joined substrate including a substrate different in type and a thin film of GaN joined firmly on the substrate different in type, and at least one GaN-based semiconductor layer deposited on the thin film of GaN, can be fabricated at low cost.
    Type: Application
    Filed: April 22, 2010
    Publication date: August 19, 2010
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Hitoshi KASAI, Akihiro Hachigo, Yoshiki Miura, Katsushi Akita
  • Patent number: 7728348
    Abstract: There is provided a method of producing a thin GaN film-joined substrate, including the steps of: joining on a GaN bulk crystalline body a substrate different in type or chemical composition from GaN; and dividing the GaN bulk crystalline body at a plane having a distance of at least 0.1 ?m and at most 100 ?m from an interface thereof with the substrate different in type, to provide a thin film of GaN on the substrate different in type, wherein the GaN bulk crystalline body had a surface joined to the substrate different in type, that has a maximum surface roughness Rmax of at most 20 ?m. Thus a GaN-based semiconductor device including a thin GaN film-joined substrate including a substrate different in type and a thin film of GaN joined firmly on the substrate different in type, and at least one GaN-based semiconductor layer deposited on the thin film of GaN, can be fabricated at low cost.
    Type: Grant
    Filed: June 28, 2007
    Date of Patent: June 1, 2010
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Hitoshi Kasai, Akihiro Hachigo, Yoshiki Miura, Katsushi Akita
  • Patent number: 7518216
    Abstract: A method of forming an iron-doped gallium nitride for a semi-insulating GaN substrate is provided. A substrate 1, such as a sapphire substrate having the (0001) plane, is placed on a susceptor of a metalorganic hydrogen chloride vapor phase apparatus 11. Next, gaseous iron compound GFe from a source 13 for an iron compound, such as ferrocene, and hydrogen chloride gas G1HCl from a hydrogen chloride source 15 are caused to react with each other in a mixing container 16 to generate gas GFeComp of an iron-containing reaction product, such as iron chloride (FeCl2). In association with the generation, the iron-containing reaction product GFeComp, first substance gas GN containing elemental nitrogen from a nitrogen source 17, and second substance gas GGa containing elemental gallium are supplied to a reaction tube 21 to form iron-doped gallium nitride 23 on the substrate 1.
    Type: Grant
    Filed: March 20, 2006
    Date of Patent: April 14, 2009
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Akinori Koukitu, Yoshinao Kumagai, Yoshiki Miura, Kikurou Takemoto, Fumitaka Sato
  • Publication number: 20090093077
    Abstract: Assuming that r (m) represents the radius of a GaN substrate, t1 (m) represents the thickness of the GaN substrate, h1 (m) represents a warp of the GaN substrate before formation of an epitaxialwafer, t2 (m) represents the thickness of an AlxGa(1?x)N layer, h2 (m) represents a warp of the epitaxialwafer, a1 represents the lattice constant of GaN and a2 represents the lattice constant of AlN, the value t1 found by the following expression is decided as the minimum thickness (t1) of the GaN substrate: (1.5×1011×t13+1.2×1011×t23)×{1/(1.5×1011×t1)+1/(1.2×1011×t2)}/{15.96×x×(1?a2/a1)}×(t1+t2)+(t1×t2)/{5.32×x×(1?a2/a)}?(r2+h2)/2h=0 A GaN substrate having a thickness of at least this minimum thickness (t1) and less than 400 ?m is formed.
    Type: Application
    Filed: October 3, 2008
    Publication date: April 9, 2009
    Applicant: Sumitomo Electric Industries, Ltd.
    Inventors: Fumitake NAKANISHI, Yoshiki Miura
  • Publication number: 20090079036
    Abstract: A method of forming an iron-doped gallium nitride for a semi-insulating GaN substrate is provided. A substrate (1), such as a (0001)-cut sapphire substrate, is placed on a susceptor of a metalorganic hydrogen chloride vapor phase apparatus (11). Next, gaseous iron compound GFe from a source (13) for an iron compound, such as ferrocene, and hydrogen chloride gas G1HCl from a hydrogen chloride source (15) are caused to react with each other in a mixing container (16) to generate gas GFeComp of an iron-containing reaction product, such as iron chloride (FeCl2). In association with the generation, the iron-containing reaction product GFeComp, first substance gas GN containing elemental nitrogen from a nitrogen source (17), and second substance gas GGa containing elemental gallium are supplied to a reaction tube (21) to form iron-doped gallium nitride (23) on the substrate (1).
    Type: Application
    Filed: December 2, 2008
    Publication date: March 26, 2009
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Akinori Koukitu, Yoshinao Kumagai, Yoshiki Miura, Kikurou Takemoto, Fumitaka Sato
  • Publication number: 20080308814
    Abstract: There is disclosed a method for forming a gallium nitride layer of which resistivity is 1×106?·cm or more, including steps of: forming a gallium nitride layer containing iron on a substrate; and heating said gallium nitride layer formed on said substrate.
    Type: Application
    Filed: June 10, 2008
    Publication date: December 18, 2008
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Seiji NAKAHATA, Fumitaka Sato, Yoshiki Miura, Akinori Koukitu, Yoshinao Kumagai
  • Publication number: 20080308906
    Abstract: A GaN substrate having a large diameter of two inches or more by which a semiconductor device such as a light emitting element with improved characteristics such as luminance efficiency, an operating life and the like can be obtained at low cost industrially, a substrate having an epitaxial layer formed on the GaN substrate, a semiconductor device, and a method of manufacturing the GaN substrate are provided. A GaN substrate has a main surface and contains a low-defect crystal region and a defect concentrated region adjacent to low-defect crystal region. Low-defect crystal region and defect concentrated region extend from the main surface to a back surface positioned on the opposite side of the main surface. A plane direction [0001] is inclined in an off-angle direction with respect to a normal vector of the main surface.
    Type: Application
    Filed: June 11, 2008
    Publication date: December 18, 2008
    Applicant: Sumitomo Electric Industries, Ltd.
    Inventors: Hideki OSADA, Hitoshi Kasai, Keiji Ishibashi, Seiji Nakahata, Takashi Kyono, Katsushi Akita, Yoshiki Miura
  • Publication number: 20080308815
    Abstract: Affords a GaN substrate from which enhanced-emission-efficiency light-emitting and like semiconductor devices can be produced, an epi-substrate in which an epitaxial layer has been formed on the GaN substrate principal surface, a semiconductor device, and a method of manufacturing the GaN substrate. The GaN substrate is a substrate having a principal surface with respect to whose normal vector the [0001] plane orientation is inclined in two different off-axis directions.
    Type: Application
    Filed: June 13, 2008
    Publication date: December 18, 2008
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Hitoshi Kasai, Keiji Ishibashi, Seiji Nakahata, Katsushi Akita, Takashi Kyono, Yoshiki Miura
  • Publication number: 20080299694
    Abstract: In a semiconductor laser manufacturing method, a GaN single-crystal substrate is formed by slicing a GaN bulk crystal, grown on a c-plane, parallel to an a-plane which is perpendicular to the c-plane. In this substrate, crystal defects extending parallel to the c-axis direction do not readily exert an influence, and degradation of element characteristics due to crystal defects can be suppressed. Further, because the a-plane is a nonpolar plane, improved light emission efficiency and longer wavelengths can be achieved compared with the c-plane, which is a polar plane. Hence a semiconductor laser manufacturing method of this invention enables further improvement of the element characteristics of the semiconductor laser to be fabricated.
    Type: Application
    Filed: May 27, 2008
    Publication date: December 4, 2008
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Katsushi AKITA, Hitoshi Kasai, Yoshiki Miura, Kensaku Motoki
  • Publication number: 20080296610
    Abstract: For a semiconductor laser, a stacked member comprising an active layer is formed on the surface of a GaN single-crystal substrate, a defect aggregation portion is formed on the rear face of the GaN single-crystal substrate, and an electrode is formed so as to be electrically connected to the defect aggregation portion on the rear face. The defect aggregation portion of this semiconductor laser has numerous crystal defects, and so the carrier concentration is high, and the electrical resistivity is lowered significantly. For this reason, in a semiconductor laser of this invention in which an electrode is formed on this defect aggregation portion, an Ohmic contact can easily be obtained between the GaN single-crystal substrate and the electrode, and by this means a lowered driving voltage is realized.
    Type: Application
    Filed: May 22, 2008
    Publication date: December 4, 2008
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Katsushi AKITA, Hitoshi Kasai, Yoshiki Miura, Kensaku Motoki
  • Publication number: 20080169483
    Abstract: There is provided a method of producing a thin GaN film-joined substrate, including the steps of: joining on a GaN bulk crystalline body a substrate different in type or chemical composition from GaN; and dividing the GaN bulk crystalline body at a plane having a distance of at least 0.1 ?m and at most 100 ?m from an interface thereof with the substrate different in type, to provide a thin film of GaN on the substrate different in type, wherein the GaN bulk crystalline body had a surface joined to the substrate different in type, that has a maximum surface roughness Rmax of at most 20 ?m. Thus a GaN-based semiconductor device including a thin GaN film-joined substrate including a substrate different in type and a thin film of GaN joined firmly on the substrate different in type, and at least one GaN-based semiconductor layer deposited on the thin film of GaN, can be fabricated at low cost.
    Type: Application
    Filed: June 28, 2007
    Publication date: July 17, 2008
    Inventors: Hitoshi Kasai, Akihiro Hachigo, Yoshiki Miura, Katsushi Akita