Patents by Inventor Yoshikuni Okumura

Yoshikuni Okumura has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210054117
    Abstract: The present invention relates to a method for producing a copolymer of ethylene and an allyl monomer that is represented by formula (1) and has a polar group, or a copolymer of ethylene, the allyl monomer that is represented by formula (1) and has a polar group, and another monomer. This production method is characterized by using a metal complex, which is represented by general formula (C1), as a polymerization catalyst and by having a silane compound, which is represented by general formula (2) and has a silicon-hydrogen bond, coexist with the metal complex. (In the formulae, the symbols are as defined in the description.) According to the present invention, a copolymer of an allyl monomer that has a polar group is able to be produced with high catalytic activity, said copolymer being capable of having various applications.
    Type: Application
    Filed: January 29, 2019
    Publication date: February 25, 2021
    Applicants: THE UNIVERSITY OF TOKYO, SHOWA DENKO K.K., JAPAN POLYETHYLENE CORPORATION
    Inventors: Shingo ITO, Kyoko NOZAKI, Junichi KURODA, Yoshikuni OKUMURA, Shinya HAYASHI, Minoru KOBAYASHI, Yuichiro YASUKAWA
  • Publication number: 20210040251
    Abstract: The present invention pertains to a method for producing a copolymer of ethylene and an allyl monomer having a polar group represented by general formula (1), or a copolymer of ethylene, an allyl monomer having a polar group represented by general formula (1), and other monomers, wherein the copolymer is produced in the presence of a boron compound having a boron-hydrogen bond or a boron-carbon bond (for example, a compound represented by general formula (2)) by using a metal complex represented by general formula (C1) as a polymerization catalyst (the symbols in the formulas are as described in the description). According to the present invention, a copolymer of ethylene and an allyl monomer can be efficiently produced with high catalytic activity, wherein the copolymer has a polar group and can be used in various applications.
    Type: Application
    Filed: March 7, 2019
    Publication date: February 11, 2021
    Applicants: The University of Tokyo, SHOWA DENKO K. K., Japan Polyethylene Corporation
    Inventors: Kyoko NOZAKI, Shingo ITO, Junichi KURODA, Yoshikuni OKUMURA, Shinya HAYASHI, Minoru KOBAYASHI, Yuichiro YASUKAWA
  • Publication number: 20200347159
    Abstract: A catalyst for olefin polymerization that contains a metal complex represented by general formula (C1) and a method for producing polyethylene, a copolymer of ethylene and an olefin having a polar group represented by general formula (1), or a copolymer of ethylene, an olefin having a polar group represented by general formula (1) and another monomer, using the aforementioned metal complex as a polymerization catalyst, wherein the symbols in formula (C1) and formula (1) are as defined in the specification.
    Type: Application
    Filed: November 7, 2018
    Publication date: November 5, 2020
    Applicants: THE UNIVERSITY OF TOKYO, SHOWA DENKO K. K., JAPAN POLYETHYLENE CORPORATION
    Inventors: Kyoko NOZAKI, Shingo ITO, Junichi KURODA, Yoshikuni OKUMURA, Shinya HAYASHI, Yumiko MINAMI, Minoru KOBAYASHI, Yuichiro YASUKAWA
  • Patent number: 10414837
    Abstract: The present invention relates to a method for producing a copolymer of ethylene and a polar group-containing olefin using as a catalyst a metal complex of group 10 elements having a structure represented by formula (C4) and (C5) (in the formula, “Men” represents a menthyl group and “Me” represents a methyl group). The method of the present invention makes it possible to produce a polar group-containing olefin polymer available for various applications, as being a high molecular weight body, which has been difficult to produce, and to produce the polymer in a molecular weight range such that the polymer has good moldability.
    Type: Grant
    Filed: September 15, 2015
    Date of Patent: September 17, 2019
    Assignees: THE UNIVERSITY OF TOKYO, SHOWA DENKO K.K., JAPAN POLYETHYLENE CORPORATION
    Inventors: Kyoko Nozaki, Shingo Ito, Yusuke Ota, Yoshikuni Okumura, Junichi Kuroda, Masafumi Koyano, Minoru Kobayashi, Hiroyuki Shimizu
  • Patent number: 9957285
    Abstract: A separating material superior to conventional separating materials, and a separation method are provided, with which 1,3-butadiene is selectively separated and recovered from a mixed gas including 1,3-butadiene and C4 hydrocarbons other than 1,3-butadiene. A metal complex, which comprises a dicarboxylic acid compound (I) (see (I) below) represented by general formula (I), an ion of a metal such as beryllium, and a dipyridyl compound (II) represented by general formula (II), namely L-Z-L (II) (see L below), is characterized by including, as the dipyridyl compound (II), at least two different dipyridyl compounds (II). The metal complex is used as a 1,3-butadiene separating material. Formula (I) L is represented by any of the compounds below.
    Type: Grant
    Filed: July 1, 2014
    Date of Patent: May 1, 2018
    Assignee: SHOWA DENKO K.K.
    Inventors: Keisuke Kishida, Yoshihiro Watanabe, Yoshikuni Okumura
  • Patent number: 9856190
    Abstract: A separating material superior to conventional separating materials, and a separation method are provided, with which 1,3-butadiene is selectively separated and recovered from a mixed gas including 1,3-butadiene and C4 hydrocarbons other than 1,3-butadiene. A metal complex, which comprises a dicarboxylic acid compound (I) (see (I) below) represented by general formula (I), an ion of a metal such as beryllium, and a bipyridyl compound (II) represented by general formula (II), namely L-Z-L (II) (see (L) below), is characterized by including, as the dicarboxylic acid compound (I), at least two different dicarboxylic acid compounds (I). The metal complex is used as a 1,3-butadiene separating material. Formula (I) L is represented by any of the compounds below. Formula (L).
    Type: Grant
    Filed: July 1, 2014
    Date of Patent: January 2, 2018
    Assignee: SHOWA DENKO K.K.
    Inventors: Keisuke Kishida, Yoshihiro Watanabe, Yoshikuni Okumura
  • Publication number: 20170313792
    Abstract: The present invention relates to a method for producing a copolymer of ethylene and a polar group-containing olefin using as a catalyst a metal complex of group 10 elements having a structure represented by formula (C4) and (C5) (in the formula, “Men” represents a menthyl group and “Me” represents a methyl group). The method of the present invention makes it possible to produce a polar group-containing olefin polymer available for various applications, as being a high molecular weight body, which has been difficult to produce, and to produce the polymer in a molecular weight range such that the polymer has good moldability.
    Type: Application
    Filed: September 15, 2015
    Publication date: November 2, 2017
    Applicants: THE UNIVERSITY OF TOKYO, SHOWA DENKO K.K., JAPAN POLYETHYLENE CORPORATION
    Inventors: Kyoko NOZAKI, Shingo ITO, Yusuke OTA, Yoshikuni OKUMURA, Junichi KURODA, Masafumi KOYANO, Minoru KOBAYASHI, Hiroyuki SHIMIZU
  • Patent number: 9499644
    Abstract: The present invention relates to a method for producing a homopolymer of olefin represented by formula (1): CH2?CHR1 (R1 is a hydrogen atom or hydrocarbon group having 1 to 20 carbon atoms) or a copolymer of two or more thereof or a method for producing a copolymer of olefin represented by formula (1) with olefin containing a polar group represented by formula (2): CH2?CHR2R3 (R2 is a hydrogen atom or methyl group, R3 is —COOR12, —CN, —OCOR12, —OR12, —CH2—OCOR12, —CH2OH, —CH2—N(R13)2 or —CH2-Hal (R12, R13 and Hal have the same meanings as stated in the description), using as a catalyst a metal complex of group 10 elements in the periodic system typified by the structure represented by formula 1 (“Men” represents a menthyl group and “Me” represents a methyl group). The present invention enables the production of high molecular weight polymers of the polar group-containing monomers such as polar group-containing allyl compounds.
    Type: Grant
    Filed: January 22, 2014
    Date of Patent: November 22, 2016
    Assignees: SHOWA DENKO K.K., THE UNIVERSITY OF TOKYO
    Inventors: Shingo Ito, Kyoko Nozaki, Yusuke Ota, Yoshikuni Okumura, Junichi Kuroda
  • Patent number: 9475032
    Abstract: Provided is a molded article for hydrocarbon adsorption, in which a porous metal complex, the structure of which may vary with adsorption and desorption of gases, can exhibit to a sufficient degree the adsorption and desorption capabilities inherent to the complex. This molded article for hydrocarbon adsorption is characterized by including (A) a metal complex constituted by metal ions, and organic ligands capable of bonding to the metal ions, and (B) a polymer binder component containing within its molecules a total of 0.3 mmol/g to 8.0 mmol/g, inclusive, of at least one functional group selected from group consisting of the carboxyl group, the hydroxyl group, amino groups, the mercapto group, epoxy groups, and the sulfo group.
    Type: Grant
    Filed: July 1, 2014
    Date of Patent: October 25, 2016
    Assignee: SHOWA DENKO K.K.
    Inventors: Yoshihiro Watanabe, Keisuke Kishida, Yoshikuni Okumura
  • Publication number: 20160175810
    Abstract: Provided is a molded article for hydrocarbon adsorption, in which a porous metal complex, the structure of which may vary with adsorption and desorption of gases, can exhibit to a sufficient degree the adsorption and desorption capabilities inherent to the complex. This molded article for hydrocarbon adsorption is characterized by including (A) a metal complex constituted by metal ions, and organic ligands capable of bonding to the metal ions, and (B) a polymer binder component containing within its molecules a total of 0.3 mmol/g to 8.0 mmol/g, inclusive, of at least one functional group selected from group consisting of the carboxyl group, the hydroxyl group, amino groups, the mercapto group, epoxy groups, and the sulfo group.
    Type: Application
    Filed: July 1, 2014
    Publication date: June 23, 2016
    Applicant: SHOWA DENKO K.K
    Inventors: Yoshihiro WATANABE, Keisuke KISHIDA, Yoshikuni OKUMURA
  • Publication number: 20160159823
    Abstract: A separating material superior to conventional separating materials, and a separation method are provided, with which 1,3-butadiene is selectively separated and recovered from a mixed gas including 1,3-butadiene and C4 hydrocarbons other than 1,3-butadiene. A metal complex, which comprises a dicarboxylic acid compound (I) (see (I) below) represented by general formula (I), an ion of a metal such as beryllium, and a dipyridyl compound (II) represented by general formula (II), namely L-Z-L (II) (see L below), is characterized by including, as the dipyridyl compound (II), at least two different dipyridyl compounds (II). The metal complex is used as a 1,3-butadiene separating material. Formula (I) L is represented by any of the compounds below.
    Type: Application
    Filed: July 1, 2014
    Publication date: June 9, 2016
    Applicant: SHOWA DENKO K.K.
    Inventors: Keisuke KISHIDA, Yoshihiro WATANABE, Yoshikuni OKUMURA
  • Publication number: 20160159712
    Abstract: A separating material superior to conventional separating materials, and a separation method are provided, with which 1,3-butadiene is selectively separated and recovered from a mixed gas including 1,3-butadiene and C4 hydrocarbons other than 1,3-butadiene. A metal complex, which comprises a dicarboxylic acid compound (I) (see (I) below) represented by general formula (I), an ion of a metal such as beryllium, and a bipyridyl compound (II) represented by general formula (II), namely L-Z-L (II) (see (L) below), is characterized by including, as the dicarboxylic acid compound (I), at least two different dicarboxylic acid compounds (I). The metal complex is used as a 1,3-butadiene separating material. Formula (I) L is represented by any of the compounds below.
    Type: Application
    Filed: July 1, 2014
    Publication date: June 9, 2016
    Applicant: SHOWA DENKO K.K.
    Inventors: Keisuke KISHIDA, Yoshihiro WATANABE, Yoshikuni OKUMURA
  • Patent number: 9303101
    Abstract: The present invention relates to a method for producing a high-molecular-weight copolymer of polar group-containing allyl monomers comprising monomer units represented by formulae (3) and (4) (in the formulae, R1 represents a hydrogen atom (H) or hydrocarbon group having 1 to 6 carbon atoms; R2 represents —OH, —OCOR3 (R3 represents hydrocarbon group having 1 to 5 carbon atoms), —N(R4)2 (R4 represents a hydrogen atom or hydrocarbon group having 1 to 5 carbon atoms); and n and m are a value representing the molar ratio of each of the monomer units), which has few branches and unsaturated group at the molecular end, by copolymerizing olefin and an allyl compound using a metal complex of group 10 elements in the periodic system represented by formula (I) as a catalyst.
    Type: Grant
    Filed: April 30, 2013
    Date of Patent: April 5, 2016
    Assignees: THE UNIVERSITY OF TOKYO, SHOWA DENKO K.K.
    Inventors: Kyoko Nozaki, Brad Carrow, Yoshikuni Okumura, Junichi Kuroda
  • Patent number: 9284390
    Abstract: The present invention relates to a method for producing a high-molecular-weight copolymer of polar group-containing allyl monomers including monomer units represented by formulae (3) and (4) (in the formulae, R1 represents a hydrogen atom (H) or hydrocarbon group having 1 to 6 carbon atoms; R2 represents —OH, —OCOR3 (R3 represents hydrocarbon group having 1 to 5 carbon atoms), —N(R4)2 (R4 represents a hydrogen atom or hydrocarbon group having 1 to 5 carbon atoms); and n and m are a value representing the molar ratio of each of the monomer units), which has few branches and unsaturated group at the molecular end, by copolymerizing olefin and an allyl compound using a metal complex of group 10 elements in the periodic system represented by formula (I) as a catalyst
    Type: Grant
    Filed: October 29, 2014
    Date of Patent: March 15, 2016
    Assignees: THE UNIVERSITY OF TOKYO, SHOWA DENKO K.K.
    Inventors: Kyoko Nozaki, Shingo Ito, Yoshikuni Okumura, Junichi Kuroda
  • Publication number: 20150368376
    Abstract: The present invention relates to a method for producing a homopolymer of olefin represented by formula (1): CH2?CHR1 (R1 is a hydrogen atom or hydrocarbon group having 1 to 20 carbon atoms) or a copolymer of two or more thereof or a method for producing a copolymer of olefin represented by formula (1) with olefin containing a polar group represented by formula (2): CH2?CHR2R3 (R2 is a hydrogen atom or methyl group, R3 is —COOR12, —CN, —OCOR12, —OR12, —CH2—OCOR12, —CH2OH, —CH2—N(R13)2 or —CH2-Hal (R12, R13 and Hal have the same meanings as stated in the description), using as a catalyst a metal complex of group 10 elements in the periodic system typified by the structure represented by formula 1 (“Men” represents a menthyl group and “Me” represents a methyl group). The present invention enables the production of high molecular weight polymers of the polar group-containing monomers such as polar group-containing allyl compounds.
    Type: Application
    Filed: January 22, 2014
    Publication date: December 24, 2015
    Applicants: SHOWA DENKO K.K., THE UNIVERSITY OF TOKYO
    Inventors: Shingo ITO, Kyoko NOZAKI, Yusuke OTA, Yoshikuni OKUMURA, Junichi KURODA
  • Patent number: 9051399
    Abstract: The present invention relates to a method of producing a polymer in the method for producing a copolymer of olefin and a polar group-containing monomer represented by formula (1): C(R1)2?C(R1)(C(R1)2)nR2??(1) (in the formula, the symbols have the same meanings as described in the description), the method comprising using a complex of a metal in Group 10 of the periodic table as a catalyst; and supplying a catalyst solution separated from a polymer after the polymerization reaction to a polymerization reaction system to recycle and re-use the catalyst. The production method of the present invention can dramatically reduce the catalyst cost.
    Type: Grant
    Filed: July 1, 2011
    Date of Patent: June 9, 2015
    Assignees: SHOWA DENKO K.K., THE UNIVERSITY OF TOKYO
    Inventors: Yoshikuni Okumura, Daisuke Yagyu
  • Publication number: 20150099857
    Abstract: The present invention relates to a method for producing a high-molecular-weight copolymer of polar group-containing allyl monomers comprising monomer units represented by formulae (3) and (4) (in the formulae, R1 represents a hydrogen atom (H) or hydrocarbon group having 1 to 6 carbon atoms; R2 represents —OH, —OCOR3 (R3 represents hydrocarbon group having 1 to 5 carbon atoms), —N(R4)2 (R4 represents a hydrogen atom or hydrocarbon group having 1 to 5 carbon atoms); and n and m are a value representing the molar ratio of each of the monomer units), which has few branches and unsaturated group at the molecular end, by copolymerizing olefin and an allyl compound using a metal complex of group 10 elements in the periodic system represented by formula (I) as a catalyst.
    Type: Application
    Filed: April 30, 2013
    Publication date: April 9, 2015
    Applicants: SHOWA DENKO K.K., THE UNIVERSITY OF TOKYO
    Inventors: Kyoko Nozaki, Brad Carrow, Yoshikuni Okumura, Junichi Kuroda
  • Publication number: 20150051361
    Abstract: The present invention relates to a method for producing a high-molecular-weight copolymer of polar group-containing allyl monomers including monomer units represented by formulae (3) and (4) (in the formulae, R1 represents a hydrogen atom (H) or hydrocarbon group having 1 to 6 carbon atoms; R2 represents —OH, —OCOR3 (R3 represents hydrocarbon group having 1 to 5 carbon atoms), —N(R4)2 (R4 represents a hydrogen atom or hydrocarbon group having 1 to 5 carbon atoms); and n and m are a value representing the molar ratio of each of the monomer units), which has few branches and unsaturated group at the molecular end, by copolymerizing olefin and an allyl compound using a metal complex of group 10 elements in the periodic system represented by formula (I) as a catalyst
    Type: Application
    Filed: October 29, 2014
    Publication date: February 19, 2015
    Applicants: SHOWA DENKO K.K., THE UNIVERSITY OF TOKYO
    Inventors: Kyoko NOZAKI, Shingo ITO, Yoshikuni OKUMURA, Junichi KURODA
  • Patent number: 8916663
    Abstract: The present invention relates to a method for producing a high-molecular-weight copolymer of polar group-containing allyl monomers including monomer units represented by formulae (3) and (4) (in the formulae, R1 represents a hydrogen atom (H) or hydrocarbon group having 1 to 6 carbon atoms; R2 represents —OH, —OCOR3 (R3 represents hydrocarbon group having 1 to 5 carbon atoms), —N(R4)2 (R4 represents a hydrogen atom or hydrocarbon group having 1 to 5 carbon atoms); and n and m are a value representing the molar ratio of each of the monomer units), which has few branches and unsaturated group at the molecular end, by copolymerizing olefin and a polar group-containing allyl compound using a metal complex of group 10 elements in the periodic system represented by formula (I) as a catalyst.
    Type: Grant
    Filed: August 26, 2010
    Date of Patent: December 23, 2014
    Assignees: The University of Tokyo, Showa Denko K.K.
    Inventors: Kyoko Nozaki, Shingo Ito, Yoshikuni Okumura, Junichi Kuroda
  • Patent number: 8889805
    Abstract: The present invention provides a metal complex of group 10 elements of the periodic table having a carboxylate structure represented by formula (C2); a catalyst for polymerization of olefin mainly comprising the metal complex; and a method for producing polymers by homopolymerizing olefin represented by formula (1), polymerizing two or more kinds of the above olefin, or copolymerizing olefin represented by formula (1) with polar group-containing olefin represented by formula (2) (the meaning of the symbols are as set forth in the description) using the catalyst. A metal complex of group 10 elements of the periodic table, in which all of the coordinating atoms to the metal are a hetero atom is stable and useful as a catalyst component for olefin polymerization, and can be used for a long time in homopolymerization of olefin or copolymerization of two or more kinds of olefin.
    Type: Grant
    Filed: July 22, 2011
    Date of Patent: November 18, 2014
    Assignees: Showa Denko K.K., The University of Tokyo
    Inventors: Shingo Ito, Kyoko Nozaki, Yoshikuni Okumura, Junichi Kuroda