Patents by Inventor Yoshimasa Kawami

Yoshimasa Kawami has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8460515
    Abstract: A biocoke producing apparatus has a reaction vessel that has a preset temperature range and pressure range for, without carbonizing of the pulverized biomass, inducing a pyrolytic or thermal curing reaction of lignin and hemicellulose thereof. The reaction vessel has a pressurization device for pressurizing to the pressure range, a heating device for heating to the temperature range in the state of the pressurization and a cooling device for cooling after maintaining of the above state. Multiple reaction vessels are provided. A pulverization delivery conveyor is provided superior to these reaction vessels, and each of the multiple reaction vessels is connected via a connection tube to the conveyor. The connection tube is provided with a pulverizate charging device for charging a given amount of pulverized biomass in accordance with a timing of pulverizate charging to the reaction vessels.
    Type: Grant
    Filed: April 22, 2008
    Date of Patent: June 11, 2013
    Assignees: Naniwa Roki Co., Ltd., Kinki University
    Inventors: Yoshimasa Kawami, Jun Satou, Tamio Ida
  • Patent number: 8454801
    Abstract: An apparatus and process for producing biocoke usable as a substitute fuel for coal coke from biomass as a raw material. The apparatus comprises pulverizing means for pulverizing a biomass raw material attributed to photosynthesis; heating means for heating to the temperature range in which the hemicellulose of the pulverized biomass raw material is pyrolyzed so as to exhibit bonding effects; pressurization means for, in the state of the heating, pressurizing to the pressure range in which the lignin of the pulverized biomass exhibits a thermal curing reaction and maintaining the pressure; and cooling means for cooling after maintaining the state of the pressurization. The apparatus further comprises temperature detecting means provided at the exit end of the region being heated by the heating means and regulation means for judging a reaction terminal point in accordance with the result of the temperature detection and regulating the timing for transfer from heating to cooling.
    Type: Grant
    Filed: April 22, 2008
    Date of Patent: June 4, 2013
    Assignees: Naniwa Roki Co., Ltd., Kinki University
    Inventors: Yoshimasa Kawami, Jun Satou, Ayumu Yamazaki, Tamio Ida
  • Publication number: 20120168296
    Abstract: A method of producing biocokes in which pulverized biomass is fed and pressed in a reaction container is provided, wherein the pulverized biomass in a substantially-packed state is pressure-formed while being heated in a temperature range and a pressure range to obtain a semi-carbonized solid matter or pre-semi-carbonized solid matter and then cooled to produce biocoke. The method may includes a filling step; a reaction step; heating the pulverized biomass by means of a heating device to the temperature range and keeping such state for a prescribed period of time to form a shaped matter of the pulverized biomass in the reaction container, and then cooling the shaped matter by switching from the heating device to a cooling device; and an ejecting step.
    Type: Application
    Filed: September 30, 2011
    Publication date: July 5, 2012
    Applicants: NANIWA ROKI CO., LTD, KINKI UNIVERSITY
    Inventors: Tamio IDA, Yoshimasa KAWAMI, Jun SATOU
  • Publication number: 20100205860
    Abstract: A biocoke producing apparatus that realizes efficient mass production of biocoke; a method of controlling the same; and a process for manufacture thereof. The apparatus includes a horizontal tubular reaction vessel (10) provided on its one end side with a supply part (11) for pulverized biomass and provided on its other end side with a discharge part (12). On the supply part side, there is provided an extrusion piston (6) capable of reciprocation along the longitudinal direction in the interior of the reaction vessel and capable of pressurizing the pulverized biomass within the vessel; The temperature range and pressure range for inducing a pyrolytic or thermal curing reaction of lignin and hemicellulose contained in the pulverized biomass are preset, and the reaction vessel (10) is provided with a thermal reaction region (13) for heating the pulverized biomass at temperature within the above temperature range and with a cooling region (14).
    Type: Application
    Filed: April 18, 2008
    Publication date: August 19, 2010
    Inventors: Yoshimasa Kawami, Jun Satou, Tamio Ida
  • Publication number: 20100162618
    Abstract: A biocoke producing apparatus that realizes efficient mass production of biocoke; and a process therefor. There is disclosed a biocoke producing apparatus capable of pressure molding of a moisture-regulated pulverized biomass while heating the same in a reaction vessel (1) to thereby obtain biocoke. In the reaction vessel (1), there are preset the temperature range and pressure range for, without carbonizing of the pulverized biomass, inducing a pyrolytic or thermal curing reaction of lignin and hemicellulose thereof. The reaction vessel (1) has pressurization means for pressurizing to the pressure range, heating means for heating to the temperature range in the state of the pressurization and cooling means for cooling after maintaining of the above state. Multiple reaction vessels (1) are provided. A pulverization delivery conveyor (20) is provided superior to these reaction vessels, and each of the multiple reaction vessels is connected via a connection tube (4) to the conveyor.
    Type: Application
    Filed: April 22, 2008
    Publication date: July 1, 2010
    Inventors: Yoshimasa Kawami, Jun Satou, Tamio Ida
  • Publication number: 20100133086
    Abstract: An apparatus and process for producing biocoke usable as a substitute fuel for coal coke from biomass as a raw material. The apparatus comprises pulverizing means for pulverizing a biomass raw material attributed to photosynthesis; heating means for heating to the temperature range in which the hemicellulose of the pulverized biomass raw material is pyrolyzed so as to exhibit bonding effects; pressurization means for, in the state of the heating, pressurizing to the pressure range in which the lignin of the pulverized biomass exhibits a thermal curing reaction and maintaining the pressure; and cooling means for cooling after maintaining the state of the pressurization. The apparatus further comprises temperature detecting means provided at the exit end of the region being heated by the heating means and regulation means for judging a reaction terminal point in accordance with the result of the temperature detection and regulating the timing for transfer from heating to cooling.
    Type: Application
    Filed: April 22, 2008
    Publication date: June 3, 2010
    Inventors: Yoshimasa Kawami, Jun Satou, Ayumu Yamazaki, Tamio Ida
  • Patent number: 6172271
    Abstract: This invention provides a method for reclaiming oil from waste plastic in such a way that thermosetting resins and solid foreign matter in the plastic will not pose a problem. This method greatly reduces the burden of presorting the garbage or industrial waste. To achieve this objective when oil is to be reclaimed from a waste plastic containing chlorine compounds, such as vinyl chloride, the plastic must first be stripped of chlorine. Prior to pyrolysis, while being conveyed forward in a continuous stream, the plastic is mixed with heated sand and/or an additive agent to raise its temperature to 250-350° C. This creates a product which is comprised of a mixture of sand and substantially dechlorinated plastic. The product is mixed with heated sand to heat it directly to a temperature of 350-500° C. It is maintained at this temperature until pyrolysis occurs.
    Type: Grant
    Filed: November 12, 1999
    Date of Patent: January 9, 2001
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Hirotoshi Horizoe, Takeshi Amari, Hiroshi Nagai, Shizuo Yasuda, Yuji Kaihara, Yoshimasa Kawami, Yasumasa Matsukawa
  • Patent number: 6133499
    Abstract: According to the present invention, boiler water is pressurized so that its boiling point is set at approximately 200.degree. C. to 320.degree. C. The boiler water is heated in at least two stages. Thermal energy of gases containing chlorine compounds is used to heat the water to its boiling point. Thermal energy of gases which do not contain chlorine compounds is used to heat the water from its boiling point until superheated steam of a given temperature is generated. The heating which uses the thermal energy of gases containing chlorine compounds is accomplished using the thermal energy from the combustion of pyrolysis gases obtained from a pyrolysis means in which waste material is supplied into a chamber containing a fluidized bed medium which has been heated to at least 300.degree. C., and a pyrolytic reaction is induced.
    Type: Grant
    Filed: January 12, 1998
    Date of Patent: October 17, 2000
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Hirotoshi Horizoe, Yoshihito Shimizu, Jun Sato, Shizuo Yasuda, Yuji Kaihara, Yoshimasa Kawami
  • Patent number: 6011187
    Abstract: This invention provides a method for reclaiming oil from waste plastic in such a way that thermosetting resins and solid foreign matter in the plastic will not pose a problem. This method greatly reduces the burden of presorting the garbage or industrial waste. To achieve this objective when oil is to be reclaimed from a waste plastic containing chlorine compounds, such as vinyl chloride, the plastic must first be stripped of chlorine. Prior to pyrolysis, while being conveyed forward in a continuous stream, the plastic is mixed with heated sand and/or an additive agent to raise its temperature to 250-350.degree. C. This creates a product which is comprised of a mixture of sand and substantially dechlorinated plastic. The product is mixed with heated sand to heat it directly to a temperature of 350-500.degree. C. It is maintained at this temperature until pyrolysis occurs.
    Type: Grant
    Filed: October 27, 1997
    Date of Patent: January 4, 2000
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Hirotoshi Horizoe, Takeshi Amari, Hiroshi Nagai, Shizuo Yasuda, Yuji Kaihara, Yoshimasa Kawami, Yasumasa Matsukawa