Patents by Inventor Yoshimichi Mitamura

Yoshimichi Mitamura has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240194898
    Abstract: An electrode for a redox flow battery including a carbon structural body, wherein, in a measurement of surface functional group concentrations of the carbon structural body, a carbon concentration is 82.0% or higher and 98.0% or lower, a nitrogen concentration is 1.0% or higher and 10.0% or lower, and an oxygen concentration is 1.0% or higher and 8.0% or lower.
    Type: Application
    Filed: February 24, 2022
    Publication date: June 13, 2024
    Applicant: ASAHI KASEI KABUSHIKI KAISHA
    Inventors: Atsushi SUZUKI, Junya YAMASHITA, Yoshimichi MITAMURA
  • Patent number: 10409164
    Abstract: A heat-reactive resist material contains copper oxide, and silicon or silicon oxide, and is formed so that the content of silicon or silicon oxide in the heat-reactive resist material is 4.0 mol % or more less than 10.0 mol % in terms of mole of silicon. A heat-reactive resist layer is formed using the heat-reactive resist material, is exposed, and then, is developed with a developing solution. Using the obtained heat-reactive resist layer as a mask, dry etching is performed on a substrate with a fluorocarbon to manufacture a mold having a concavo-convex shape on the substrate surface. At this point, it is possible to control a fine pattern comprised of the concavo-convex shape.
    Type: Grant
    Filed: July 3, 2018
    Date of Patent: September 10, 2019
    Assignee: ASAHI KASEI KABUSHIKI KAISHA
    Inventors: Yoshimichi Mitamura, Takuto Nakata
  • Patent number: 10399254
    Abstract: A seamless mold manufacturing method of the invention is a seamless mold manufacturing method having the steps of forming a thermal reaction type resist layer on a sleeve-shaped mold, and exposing using a laser and developing the thermal reaction type resist layer and thereby forming a fine mold pattern, and is characterized in that the thermal reaction type resist layer is comprised of a thermal reaction type resist having a property of reacting in predetermined light intensity or more in a light intensity distribution in a spot diameter of the laser.
    Type: Grant
    Filed: December 31, 2015
    Date of Patent: September 3, 2019
    Assignee: ASAHI KASEI KABUSHIKI KAISHA
    Inventors: Masaru Suzuki, Yoshimichi Mitamura, Masatoshi Maeda
  • Publication number: 20180314159
    Abstract: A heat-reactive resist material contains copper oxide, and silicon or silicon oxide, and is formed so that the content of silicon or silicon oxide in the heat-reactive resist material is 4.0 mol % or more less than 10.0 mol % in terms of mole of silicon. A heat-reactive resist layer is formed using the heat-reactive resist material, is exposed, and then, is developed with a developing solution. Using the obtained heat-reactive resist layer as a mask, dry etching is performed on a substrate with a fluorocarbon to manufacture a mold having a concavo-convex shape on the substrate surface. At this point, it is possible to control a fine pattern comprised of the concavo-convex shape.
    Type: Application
    Filed: July 3, 2018
    Publication date: November 1, 2018
    Applicant: ASAHI KASEI E-MATERIALS CORPORATION
    Inventors: Yoshimichi MITAMURA, Takuto NAKATA
  • Patent number: 9701044
    Abstract: A fine concavo-convex structure product (10) is provided with an etching layer (11), and a resist layer (12) comprised of a heat-reactive resist material for dry etching provided on the etching layer (11), a concavo-convex structure associated with opening portions (12a) formed in the resist layer (12) is formed in the etching layer (11), a pattern pitch P of a fine pattern of the concavo-convex structure ranges from 1 nm to 10 ?m, a pattern depth H of the fine pattern ranges from 1 nm to 10 ?m, and a pattern cross-sectional shape of the fine pattern is a trapezoid, a triangle or a mixed shape thereof. The heat-reactive resist material for dry etching has, as a principal constituent element, at least one species selected from the group consisting of Cu, Nb, Sn, Mn, oxides thereof, nitrides thereof and NiBi.
    Type: Grant
    Filed: March 12, 2015
    Date of Patent: July 11, 2017
    Assignee: ASAHI KASEI KABUSHIKI KAISHA
    Inventor: Yoshimichi Mitamura
  • Patent number: 9623590
    Abstract: A fine concavo-convex structure product (10) is provided with an etching layer (11), and a resist layer (12) comprised of a heat-reactive resist material for dry etching provided on the etching layer (11), a concavo-convex structure associated with opening portions (12a) formed in the resist layer (12) is formed in the etching layer (11), a pattern pitch P of a fine pattern of the concavo-convex structure ranges from 1 nm to 10 ?m, a pattern depth H of the fine pattern ranges from 1 nm to 10 ?m, and a pattern cross-sectional shape of the fine pattern is a trapezoid, a triangle or a mixed shape thereof. The heat-reactive resist material for dry etching has, as a principal constituent element, at least one species selected from the group consisting of Cu, Nb, Sn, Mn, oxides thereof, nitrides thereof and NiBi.
    Type: Grant
    Filed: January 24, 2013
    Date of Patent: April 18, 2017
    Assignee: ASAHI KASEI E-MATERIALS CORPORATION
    Inventor: Yoshimichi Mitamura
  • Patent number: 9614136
    Abstract: In an optical substrate (1), a concave-convex structure (12) including a plurality of independent convex portions (131 to 134) and concave portions (14) provided between the convex portions (131 to 134) is provided in a surface. The average interval Pave between the adjacent convex portions (131 to 134) in the concave-convex structure (12) satisfies 50 nm?Pave?1500 nm, and the convex portion (133) having a convex portion height hn satisfying 0.6 h?hn?0 h for the average convex portion height Have is present with a probability Z satisfying 1/10000?Z?1/5. When the optical substrate (1) is used in a semiconductor light-emitting element, dislocations in a semiconductor layer are dispersed to reduce the dislocation density, and thus internal quantum efficiency IQE is improved, and a waveguide mode is removed by light scattering and thus the light the extraction efficiency LEE is increased, with the result that the efficiency of light emission of the semiconductor light-emitting element is enhanced.
    Type: Grant
    Filed: March 29, 2013
    Date of Patent: April 4, 2017
    Assignee: ASAHI KASEI KABUSHIKI KAISHA
    Inventors: Jun Koike, Yoshimichi Mitamura, Fujito Yamaguchi
  • Patent number: 9597822
    Abstract: A fine concavo-convex structure product (10) is provided with an etching layer (11), and a resist layer (12) comprised of a heat-reactive resist material for dry etching provided on the etching layer (11), a concavo-convex structure associated with opening portions (12a) formed in the resist layer (12) is formed in the etching layer (11), a pattern pitch P of a fine pattern of the concavo-convex structure ranges from 1 nm to 10 ?m, a pattern depth H of the fine pattern ranges from 1 nm to 10 ?m, and a pattern cross-sectional shape of the fine pattern is a trapezoid, a triangle or a mixed shape thereof. The heat-reactive resist material for dry etching has, as a principal constituent element, at least one species selected from the group consisting of Cu, Nb, Sn, Mn, oxides thereof, nitrides thereof and NiBi.
    Type: Grant
    Filed: March 12, 2015
    Date of Patent: March 21, 2017
    Assignee: ASAKI KASEI E-MATERIAL CORPORATION
    Inventor: Yoshimichi Mitamura
  • Publication number: 20160114503
    Abstract: A seamless mold manufacturing method of the invention is a seamless mold manufacturing method having the steps of forming a thermal reaction type resist layer on a sleeve-shaped mold, and exposing using a laser and developing the thermal reaction type resist layer and thereby forming a fine mold pattern, and is characterized in that the thermal reaction type resist layer is comprised of a thermal reaction type resist having a property of reacting in predetermined light intensity or more in a light intensity distribution in a spot diameter of the laser.
    Type: Application
    Filed: December 31, 2015
    Publication date: April 28, 2016
    Applicant: ASAHI KASEI E-MATERIALS CORPORATION
    Inventors: Masaru Suzuki, Yoshimichi MITAMURA, Masatoshi MAEDA
  • Patent number: 9257142
    Abstract: A heat-reactive resist material of the invention is characterized in that the boiling point of the fluoride of the element is 200° C. or more. By this means, it is possible to achieve the heat-reactive resist material having high resistance to dry etching using fluorocarbons to form a pattern with the deep groove depth.
    Type: Grant
    Filed: October 13, 2009
    Date of Patent: February 9, 2016
    Assignee: ASAHI KASEI E-MATERIALS CORPORATION
    Inventors: Yoshimichi Mitamura, Kazuyuki Furuya, Norikiyo Nakagawa, Masatoshi Maeda
  • Patent number: 9139771
    Abstract: In order to provide a copper oxide etchant and an etching method using the same capable of selectively etching exposure/non-exposure portions when laser light exposure is performed by using copper oxide as a thermal-reactive resist material, the copper oxide etchant for selectively etching copper oxides having different oxidation numbers in a copper oxide-containing layer containing the copper oxide as a main component contains at least a chelating agent or salts thereof.
    Type: Grant
    Filed: December 5, 2013
    Date of Patent: September 22, 2015
    Assignee: ASAHI KASEI E-MATERIALS CORPORATION
    Inventors: Norikiyo Nakagawa, Takuto Nakata, Yoshimichi Mitamura
  • Publication number: 20150183152
    Abstract: A fine concavo-convex structure product (10) is provided with an etching layer (11), and a resist layer (12) comprised of a heat-reactive resist material for dry etching provided on the etching layer (11), a concavo-convex structure associated with opening portions (12a) formed in the resist layer (12) is formed in the etching layer (11), a pattern pitch P of a fine pattern of the concavo-convex structure ranges from 1 nm to 10 ?m, a pattern depth H of the fine pattern ranges from 1 nm to 10 ?m, and a pattern cross-sectional shape of the fine pattern is a trapezoid, a triangle or a mixed shape thereof. The heat-reactive resist material for dry etching has, as a principal constituent element, at least one species selected from the group consisting of Cu, Nb, Sn, Mn, oxides thereof, nitrides thereof and NiBi.
    Type: Application
    Filed: March 12, 2015
    Publication date: July 2, 2015
    Applicant: ASAHI KASEI E-MATERIALS CORPORATION
    Inventor: Yoshimichi MITAMURA
  • Publication number: 20150183136
    Abstract: A fine concavo-convex structure product (10) is provided with an etching layer (11), and a resist layer (12) comprised of a heat-reactive resist material for dry etching provided on the etching layer (11), a concavo-convex structure associated with opening portions (12a) formed in the resist layer (12) is formed in the etching layer (11), a pattern pitch P of a fine pattern of the concavo-convex structure ranges from 1 nm to 10 ?m, a pattern depth H of the fine pattern ranges from 1 nm to 10 ?m, and a pattern cross-sectional shape of the fine pattern is a trapezoid, a triangle or a mixed shape thereof. The heat-reactive resist material for dry etching has, as a principal constituent element, at least one species selected from the group consisting of Cu, Nb, Sn, Mn, oxides thereof, nitrides thereof and NiBi.
    Type: Application
    Filed: March 12, 2015
    Publication date: July 2, 2015
    Applicant: ASAHI KASEI E-MATERIALS CORPORATION
    Inventor: Yoshimichi MITAMURA
  • Publication number: 20150048380
    Abstract: In an optical substrate (1), a concave-convex structure (12) including a plurality of independent convex portions (131 to 134) and concave portions (14) provided between the convex portions (131 to 134) is provided in a surface. The average interval Pave between the adjacent convex portions (131 to 134) in the concave-convex structure (12) satisfies 50 nm?Pave?1500 nm, and the convex portion (133) having a convex portion height hn satisfying 0.6 h?hn?0 h for the average convex portion height Have is present with a probability Z satisfying 1/10000?Z?1/5. When the optical substrate (1) is used in a semiconductor light-emitting element, dislocations in a semiconductor layer are dispersed to reduce the dislocation density, and thus internal quantum efficiency IQE is improved, and a waveguide mode is removed by light scattering and thus the light the extraction efficiency LEE is increased, with the result that the efficiency of light emission of the semiconductor light-emitting element is enhanced.
    Type: Application
    Filed: March 29, 2013
    Publication date: February 19, 2015
    Applicant: ASAHI KASEI E-MATERIALS CORPORATION
    Inventors: Jun Koike, Yoshimichi Mitamura, Fujito Yamaguchi
  • Publication number: 20150017275
    Abstract: A fine concavo-convex structure product (10) is provided with an etching layer (11), and a resist layer (12) comprised of a heat-reactive resist material for dry etching provided on the etching layer (11), a concavo-convex structure associated with opening portions (12a) formed in the resist layer (12) is formed in the etching layer (11), a pattern pitch P of a fine pattern of the concavo-convex structure ranges from 1 nm to 10 ?m, a pattern depth H of the fine pattern ranges from 1 nm to 10 ?m, and a pattern cross-sectional shape of the fine pattern is a trapezoid, a triangle or a mixed shape thereof. The heat-reactive resist material for dry etching has, as a principal constituent element, at least one species selected from the group consisting of Cu, Nb, Sn, Mn, oxides thereof, nitrides thereof and NiBi.
    Type: Application
    Filed: January 24, 2013
    Publication date: January 15, 2015
    Inventor: Yoshimichi Mitamura
  • Publication number: 20140314898
    Abstract: A heat-reactive resist material contains copper oxide, and silicon or silicon oxide, and is formed so that the content of silicon or silicon oxide in the heat-reactive resist material is 4.0 mol % or more less than 10.0 mol % in terms of mole of silicon. A heat-reactive resist layer is formed using the heat-reactive resist material, is exposed, and then, is developed with a developing solution. Using the obtained heat-reactive resist layer as a mask, dry etching is performed on a substrate with a fluorocarbon to manufacture a mold having a concavo-convex shape on the substrate surface. At this point, it is possible to control a fine pattern comprised of the concavo-convex shape.
    Type: Application
    Filed: November 16, 2012
    Publication date: October 23, 2014
    Inventors: Yoshimichi Mitamura, Takuto Nakata
  • Publication number: 20140091058
    Abstract: In order to provide a copper oxide etchant and an etching method using the same capable of selectively etching exposure/non-exposure portions when laser light exposure is performed by using copper oxide as a thermal-reactive resist material, the copper oxide etchant for selectively etching copper oxides having different oxidation numbers in a copper oxide-containing layer containing the copper oxide as a main component contains at least a chelating agent or salts thereof.
    Type: Application
    Filed: December 5, 2013
    Publication date: April 3, 2014
    Applicant: ASAHI KASEI E-MATERIALS CORPORATION
    Inventors: Norikiyo NAKAGAWA, Takuto NAKATA, Yoshimichi MITAMURA
  • Publication number: 20130026134
    Abstract: In order to provide a copper oxide etchant and an etching method using the same capable of selectively etching exposure/non-exposure portions when laser light exposure is performed by using copper oxide as a thermal-reactive resist material, the copper oxide etchant for selectively etching copper oxides having different oxidation numbers in a copper oxide-containing layer containing the copper oxide as a main component contains at least a chelating agent or salts thereof.
    Type: Application
    Filed: January 14, 2011
    Publication date: January 31, 2013
    Applicant: ASAHI KASEI KABUSHIKI KAISHA
    Inventors: Norikiyo Nakagawa, Takuto Nakata, Yoshimichi Mitamura
  • Publication number: 20110195142
    Abstract: A heat-reactive resist material of the invention is characterized in that the boiling point of the fluoride of the element is 200° C. or more. By this means, it is possible to achieve the heat-reactive resist material having high resistance to dry etching using fluorocarbons to form a pattern with the deep groove depth.
    Type: Application
    Filed: October 13, 2009
    Publication date: August 11, 2011
    Applicant: ASAHI KASEI KABUSHIKI KAISHA
    Inventors: Yoshimichi Mitamura, Kazuyuki Furuya, Norikiyo Nakagawa, Masatoshi Maeda
  • Publication number: 20110027408
    Abstract: A seamless mold manufacturing method of the invention is a seamless mold manufacturing method having the steps of forming a thermal reaction type resist layer on a sleeve-shaped mold, and exposing using a laser and developing the thermal reaction type resist layer and thereby forming a fine mold pattern, and is characterized in that the thermal reaction type resist layer is comprised of a thermal reaction type resist having a property of reacting in predetermined light intensity or more in a light intensity distribution in a spot diameter of the laser.
    Type: Application
    Filed: January 23, 2009
    Publication date: February 3, 2011
    Inventors: Masaru Suzuki, Yoshimichi Mitamura, Masatoshi Maeda