Patents by Inventor Yoshinao Kumagai

Yoshinao Kumagai has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210404086
    Abstract: As one embodiment, the present invention provides a method for growing a ?-Ga2O3-based single crystal film by using HYPE method. The method includes a step of exposing a Ga2O3-based substrate to a gallium chloride-based gas and an oxygen-including gas, and growing a ?-Ga2O3-based single crystal film on a principal surface of the Ga2O3-based substrate at a growth temperature of not lower than 900° C.
    Type: Application
    Filed: September 10, 2021
    Publication date: December 30, 2021
    Applicants: TAMURA CORPORATION, NATIONAL UNIVERSITY CORPORATION TOKYO UNIVERSITY OF AGRICULTURE AND TECHNOLOGY
    Inventors: Ken GOTO, Kohei SASAKI, Akinori KOUKITU, Yoshinao KUMAGAI, Hisashi MURAKAMI
  • Patent number: 11047067
    Abstract: [Problem] To provide a crystal laminate structure having a ?-Ga2O3 based single crystal film in which a dopant is included throughout the crystal and the concentration of the dopant can be set across a broad range. [Solution] In one embodiment of the present invention, provided is a crystal laminate structure 1 which includes: a Ga2O3 based substrate 10; and a ?-Ga2O3 based single crystal film 12 formed by epitaxial crystal growth on a primary face 11 of the Ga2O3 based substrate 10 and including Cl and a dopant doped in parallel with the crystal growth at a concentration of 1×1013 to 5.0×1020 atoms/cm3.
    Type: Grant
    Filed: December 3, 2019
    Date of Patent: June 29, 2021
    Assignees: TAMURA CORPORATION, NATIONAL UNIVERSITY CORPORATION TOKYO UNIVERSITY OF AGRICULTURE AND TECHNOLOGY
    Inventors: Ken Goto, Akinori Koukitu, Yoshinao Kumagai, Hisashi Murakami
  • Patent number: 10985016
    Abstract: A semiconductor substrate that is used as an underlying substrate for epitaxial crystal growth carried out by the HVPE method includes a ?-Ga2O3-based single crystal, and a principal plane that is a plane parallel to a [100] axis of the ?-Ga2O3-based single crystal. An epitaxial wafer includes the semiconductor substrate, and an epitaxial layer including a ?-Ga2O3-based single crystal and formed on the principal plane of the semiconductor substrate by epitaxial crystal growth using the HVPE method. A method for producing an epitaxial wafer includes by using the HVPE method, epitaxially growing an epitaxial layer including a ?-Ga2O3-based single crystal on a semiconductor substrate that includes a ?-Ga2O3-based single crystal and has a principal plane parallel to a [100] axis of the ?-Ga2O3-based single crystal.
    Type: Grant
    Filed: November 16, 2016
    Date of Patent: April 20, 2021
    Assignees: Tamura Corporation, National University Corporation Tokyo University of Agriculture and Technology
    Inventors: Ken Goto, Yoshinao Kumagai, Hisashi Murakami
  • Patent number: 10861945
    Abstract: A semiconductor element includes a high-resistivity substrate that includes a ?-Ga2O3-based single crystal including an acceptor impurity, a buffer layer on the high-resistivity substrate, the buffer layer including a ?-Ga2O3-based single crystal, and a channel layer on the buffer layer, the channel layer including a ?-Ga2O3-based single crystal including a donor impurity. A crystalline laminate structure includes a high-resistivity substrate that includes a ?-Ga2O3-based single crystal including an acceptor impurity, a buffer layer on the high-resistivity substrate, the buffer layer including a ?-Ga2O3-based single crystal, and a donor impurity-containing layer on the buffer layer, the donor impurity-containing layer including a ?-Ga2O3-based single crystal including a donor impurity.
    Type: Grant
    Filed: August 18, 2015
    Date of Patent: December 8, 2020
    Assignees: TAMURA CORPORATION, NATIONAL INSTITUTE OF INFORMATION AND COMMUNICATIONS TECHNOLOGY, NATIONAL UNIVERSITY CORPORATION TOKYO UNIVERSITY OF AGRICULTURE AND TECHNOLOGY
    Inventors: Kohei Sasaki, Ken Goto, Masataka Higashiwaki, Man Hoi Wong, Akinori Koukitu, Yoshinao Kumagai, Hisashi Murakami
  • Patent number: 10731274
    Abstract: A group III nitride laminate having monocrystalline n-type AlxGa1-xN (0.7?X?1.0) and an electrode is provided. The group III nitride laminate is characterized in that an n-type contact layer made of (AlYGa1-Y)2O3 (0.0?Y<0.3) is provided between the monocrystalline n-type AlxGa1-xN (0.7?X?1.0) and the electrode. Furthermore, a vertical semiconductor device including the above-described group III nitride laminate is provided.
    Type: Grant
    Filed: June 19, 2017
    Date of Patent: August 4, 2020
    Assignee: STANLEY ELECTRIC CO., LTD.
    Inventors: Yoshinao Kumagai, Hisashi Murakami, Toru Kinoshita
  • Publication number: 20200243332
    Abstract: A semiconductor substrate that is used as an underlying substrate for epitaxial crystal growth carried out by the HVPE method includes a ?-Ga2O3-based single crystal, and a principal plane that is a plane parallel to a [100] axis of the ?-Ga2O3-based single crystal. An epitaxial wafer includes the semiconductor substrate, and an epitaxial layer including a ?-Ga2O3-based single crystal and formed on the principal plane of the semiconductor substrate by epitaxial crystal growth using the HVPE method. A method for producing an epitaxial wafer includes by using the HVPE method, epitaxially growing an epitaxial layer including a ?-Ga2O3-based single crystal on a semiconductor substrate that includes a ?-Ga2O3-based single crystal and has a principal plane parallel to a [100] axis of the ?-Ga2O3-based single crystal.
    Type: Application
    Filed: November 16, 2016
    Publication date: July 30, 2020
    Applicants: TAMURA CORPORATION, National University Corporation Tokyo University of Agriculture and Technology
    Inventors: Ken GOTO, Yoshinao KUMAGAI, Hisashi MURAKAMI
  • Patent number: 10676841
    Abstract: A semiconductor substrate for being used as a base substrate for epitaxial crystal growth by HVPE method includes a ?-Ga2O3-based single crystal, and a principal surface that is a plane parallel to a [010] axis of the ?-Ga2O3-based single crystal. An epitaxial wafer includes the semiconductor substrate, and an epitaxial layer that includes a ?-Ga2O3-based single crystal and is formed on the principal surface of the semiconductor substrate by epitaxial crystal growth using the HVPE method. A method for manufacturing the epitaxial wafer includes forming the epitaxial layer by epitaxial crystal growth using the HVPE method on the semiconductor substrate.
    Type: Grant
    Filed: May 11, 2015
    Date of Patent: June 9, 2020
    Assignees: TAMURA CORPORATION, NATIONAL UNIVERSITY CORPORATION TOKYO UNIVERSITY OF AGRICULTURE AND TECHNOLOGY
    Inventors: Ken Goto, Akinori Koukitu, Yoshinao Kumagai, Hisashi Murakami
  • Publication number: 20200102667
    Abstract: [Problem] To provide a crystal laminate structure having a ?-Ga2O3 based single crystal film in which a dopant is included throughout the crystal and the concentration of the dopant can be set across a broad range. [Solution] In one embodiment of the present invention, provided is a crystal laminate structure 1 which includes: a Ga2O3 based substrate 10; and a ?-Ga2O3 based single crystal film 12 formed by epitaxial crystal growth on a primary face 11 of the Ga2O3 based substrate 10 and including Cl and a dopant doped in parallel with the crystal growth at a concentration of 1×1013 to 5.0×1020 atoms/cm3.
    Type: Application
    Filed: December 3, 2019
    Publication date: April 2, 2020
    Applicants: TAMURA CORPORATION, NATIONAL UNIVERSITY CORPORATION TOKYO UNIVERSITY OF AGRICULTURE AND TECHNOLOGY
    Inventors: Ken GOTO, Akinori KOUKITU, Yoshinao KUMAGAI, Hisashi MURAKAMI
  • Patent number: 10538862
    Abstract: A crystal laminate structure includes a Ga2O3-based substrate, and a ?-Ga2O3-based single crystal film formed by epitaxial crystal growth on a principal surface of the Ga2O3-based substrate. The ?-Ga2O3-based single crystal film includes Cl and a dopant doped in parallel with the crystal growth at a concentration of not less than 1×1013 atoms/cm3 and not more than 5.0×1020 atoms/cm3.
    Type: Grant
    Filed: February 17, 2016
    Date of Patent: January 21, 2020
    Assignees: TAMURA CORPORATION, NATIONAL UNIVERSITY CORPORATION TOKYO UNIVERSITY OF AGRICULTURE AND TECHNOLOGY
    Inventors: Ken Goto, Akinori Koukitu, Yoshinao Kumagai, Hisashi Murakami
  • Publication number: 20190323146
    Abstract: A group III nitride laminate having monocrystalline n-type AlxGa1-xN (0.7?X?1.0) and an electrode is provided. The group III nitride laminate is characterized in that an n-type contact layer made of (AlYGa1-Y)2O3 (0.0?Y<0.3) is provided between the monocrystalline n-type AlxGa1-xN (0.7?X?1.0) and the electrode. Furthermore, a vertical semiconductor device including the above-described group III nitride laminate is provided.
    Type: Application
    Filed: June 19, 2017
    Publication date: October 24, 2019
    Applicant: STANLEY ELECTRIC CO., LTD.
    Inventors: Yoshinao KUMAGAI, Hisashi MURAKAMI, Toru KINOSHITA
  • Patent number: 10199512
    Abstract: A high withstand voltage Schottky barrier diode includes a first layer that includes a first Ga2O3-based single crystal including a first Group IV element and Cl at a concentration of not more than 5×1016 cm?3 and that has an effective donor concentration of not less than 1×1013 and not more than 6.0×1017 cm?3, a second layer that includes a second Ga2O3-based single crystal including a second Group IV element and that has a higher effective donor concentration than the first layer and is laminated on the first layer, an anode electrode formed on the first layer, and a cathode electrode formed on the second layer.
    Type: Grant
    Filed: March 9, 2016
    Date of Patent: February 5, 2019
    Assignees: TAMURA CORPORATION, NATIONAL INSTITUTE OF INFORMATION AND COMMUNICATIONS TECHNOLOGY, NATIONAL UNIVERSITY CORPORATION TOKYO UNIVERSITY OF AGRICULTURE AND TECHNOLOGY
    Inventors: Kohei Sasaki, Ken Goto, Masataka Higashiwaki, Akinori Koukitu, Yoshinao Kumagai, Hisashi Murakami
  • Patent number: 10125433
    Abstract: A nitride semiconductor crystal has a diameter of four inches or more and is warped to have a curvature radius of 100 m or more, and has an impurity concentration of 1×1017/cm3 or lower. A manufacturing method for a nitride semiconductor crystal includes providing a substrate, feeding a gallium trihalide gas having a partial pressure of 9.0×10?3 atm or higher onto the substrate, and growing a GaN crystal in the ?C-axis direction on the substrate, where a growth temperature for the GaN crystal is 1200° C. or higher, or a manufacturing method for a nitride semiconductor crystal includes providing a substrate, feeding an aluminum trihalide gas having a partial pressure of 9.0×10?3 atm or higher onto the substrate, and growing an AlN crystal in the ?C-axis direction on the substrate, where a growth temperature for the AlN crystal is 1400° C. or higher.
    Type: Grant
    Filed: March 8, 2016
    Date of Patent: November 13, 2018
    Assignees: National University Corporation Tokyo, University of Agriculture and Technology
    Inventors: Akinori Koukitu, Yoshinao Kumagai, Hisashi Murakami
  • Publication number: 20180269351
    Abstract: InGaN-based light-emitting devices fabricated on an InGaN template layer are disclosed.
    Type: Application
    Filed: May 22, 2018
    Publication date: September 20, 2018
    Inventors: Michael R. Krames, Mark P. D'Evelyn, Akinori Koukitu, Yoshinao Kumagai, Hisashi Murakami
  • Publication number: 20180254355
    Abstract: A high withstand voltage Schottky barrier diode includes a first layer that includes a first Ga2O3-based single crystal including a first Group IV element and Cl at a concentration of not more than 5×1016 cm?3 and that has an effective donor concentration of not less than 1×1013 and not more than 6.0×1017 cm?3, a second layer that includes a second Ga2O3-based single crystal including a second Group IV element and that has a higher effective donor concentration than the first layer and is laminated on the first layer, an anode electrode formed on the first layer, and a cathode electrode formed on the second layer.
    Type: Application
    Filed: March 9, 2016
    Publication date: September 6, 2018
    Applicants: TAMURA CORPORATION, National Institute of Information and Communications Technology, National University Corporation Tokyo University of Agriculture and Technology
    Inventors: Kohei SASAKI, Ken GOTO, Masataka HIGASHIWAKI, Akinori KOUKITU, Yoshinao KUMAGAI, Hisashi MURAKAMI
  • Patent number: 9978904
    Abstract: InGaN-based light-emitting devices fabricated on an InGaN template layer are disclosed.
    Type: Grant
    Filed: October 15, 2013
    Date of Patent: May 22, 2018
    Assignee: Soraa, Inc.
    Inventors: Michael R. Krames, Mark P. D'Evelyn, Akinori Koukitu, Yoshinao Kumagai, Hisashi Murakami
  • Publication number: 20180073164
    Abstract: A crystal laminate structure includes a Ga2O3-based substrate, and a ?-Ga2O3-based single crystal film formed by epitaxial crystal growth on a principal surface of the Ga2O3-based substrate. The ?-Ga2O3-based single crystal film includes Cl and a dopant doped in parallel with the crystal growth at a concentration of not less than 1×1013 atoms/cm3 and not more than 5.0×1020 atoms/cm3.
    Type: Application
    Filed: February 17, 2016
    Publication date: March 15, 2018
    Applicants: TAMURA CORPORATION, NATIONAL UNIVERSITY CORPORATION TOKYO UNIVERSITY O F AGRICULTURE AND TECHNOLOGY
    Inventors: Ken GOTO, Akinori KOUKITU, Yoshinao KUMAGAI, Hisashi MURAKAMI
  • Patent number: 9840790
    Abstract: The invention provides highly transparent single crystalline AlN layers as device substrates for light emitting diodes in order to improve the output and operational degradation of light emitting devices. The highly transparent single crystalline AlN layers have a refractive index in the a-axis direction in the range of 2.250 to 2.400 and an absorption coefficient less than or equal to 15 cm-1 at a wavelength of 265 nm. The invention also provides a method for growing highly transparent single crystalline AlN layers, the method including the steps of maintaining the amount of Al contained in wall deposits formed in a flow channel of a reactor at a level lower than or equal to 30% of the total amount of aluminum fed into the reactor, and maintaining the wall temperature in the flow channel at less than or equal to 1200° C.
    Type: Grant
    Filed: August 23, 2012
    Date of Patent: December 12, 2017
    Assignees: Hexatech, Inc., National University Corporation Tokyo University of Agriculture and Technology, Tokuyama Corporation
    Inventors: Akinori Koukitu, Yoshinao Kumagai, Toru Nagashima, Toru Kinoshita, Yuki Kubota, Rafael F. Dalmau, Jinqiao Xie, Baxter F. Moody, Raoul Schlesser, Zlatko Sitar
  • Publication number: 20170278933
    Abstract: A semiconductor element includes a high-resistivity substrate that includes a ?-Ga2O3-based single crystal including an acceptor impurity, a buffer layer on the high-resistivity substrate, the buffer layer including a ?-Ga2O3-based single crystal, and a channel layer on the buffer layer, the channel layer including a ?-Ga2O3-based single crystal including a donor impurity. A crystalline laminate structure includes a high-resistivity substrate that includes a ?-Ga2O3-based single crystal including an acceptor impurity, a buffer layer on the high-resistivity substrate, the buffer layer including a ?-Ga2O3-based single crystal, and a donor impurity-containing layer on the buffer layer, the donor impurity-containing layer including a ?-Ga2O3-based single crystal including a donor impurity.
    Type: Application
    Filed: August 18, 2015
    Publication date: September 28, 2017
    Inventors: Kohei SASAKI, Ken GOTO, Masataka HIGASHIWAKI, Man Hoi WONG, Akinori KOUKITO, Yoshinao KUMAGAI, Hisashi MURAKAMI
  • Patent number: 9708733
    Abstract: The method for manufacturing an aluminum-based group III nitride single crystal includes the step of supplying an aluminum halide gas and a nitrogen source gas onto a base substrate, such that a reaction of the aluminum halide gas and the nitrogen source gas is conducted on the base substrate, wherein the reaction of the aluminum halide gas and the nitrogen source gas is conducted under coexistence of a halogen-based gas such that a halogen-based gas ratio (H) represented by the following formula (1) is no less than 0.1 and less than 1.0: H=VH/(VH+VAl)??(1) (In the formula (1), VH represents a supply of the halogen-based gas; and VAl represents a supply of the aluminum halide gas); and a growth rate of the aluminum-based group III nitride single crystal is no less than 10 ?m/h.
    Type: Grant
    Filed: June 10, 2014
    Date of Patent: July 18, 2017
    Assignee: TOKUYAMA CORPORATION
    Inventors: Akinori Koukitsu, Yoshinao Kumagai, Toru Nagashima, Reiko Okayama
  • Patent number: 9691942
    Abstract: The present invention relates to a single-crystalline aluminum nitride wherein a carbon concentration is 1×1014 atoms/cm3 or more and less than 3×1017 atoms/cm3, a chlorine concentration is 1×1014 to 1×1017 atoms/cm3, and an absorption coefficient at 265 nm wavelength is 40 cm?1 or less.
    Type: Grant
    Filed: December 22, 2011
    Date of Patent: June 27, 2017
    Assignees: National University Corporation Tokyo University of Agriculture and Technology, Tokuyama Corporation
    Inventors: Akinori Koukitu, Yoshinao Kumagai, Toru Nagashima, Yuki Hiraren