Patents by Inventor Yoshio Ichii

Yoshio Ichii has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8741525
    Abstract: The resin coated carrier is used with a toner in which an external additive having an average primary particle size of 50 nm or more is added to a toner particle, and has a carrier core and a resin coating layer on the surface of the carrier core. In the resin coated carrier, the following expression (1) is satisfied: 0.5??log {(A/C)/(B/C)}?2.5??(1) wherein A represents a volume resistance value (?/cm) of the resin coated carrier in an electric field of 1000 V/cm that is obtained by conducting a stirring test, B represents a volume resistance value (?/cm) of the resin coated carrier in an electric field of 1000 V/cm before the stirring test, and C represents a volume resistance value (?/cm) of the carrier core in an electric field of 1000 V/cm.
    Type: Grant
    Filed: July 1, 2009
    Date of Patent: June 3, 2014
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Osamu Wada, Takanori Kamoto, Tadashi Iwamatsu, Nobuyuki Yoshioka, Hiroyuki Hirakawa, Yoshinori Mutoh, Takashi Hara, Hirofumi Kanda, Yoshio Ichii
  • Patent number: 8401430
    Abstract: An electron emitting element (1) includes a substrate (2), an upper electrode (3), and a fine particle layer (4) sandwiched between the substrate (2) and the upper electrode (3). The fine particle layer (4) includes metal fine particles (6) with high resistance to oxidation, and insulating fine particles (5) larger in size than the metal fine particles (6). The electron emitting element (1) can steadily emit electrons not only in vacuum but also in the atmosphere. Further, the electron emitting element (1) can work without electric discharge so that harmful substances such as ozone, NOx, or the like are scarcely generated. Accordingly, degradation of the electron emitting element (1) due to oxidation does not occur. Therefore, the electron emitting element (1) has a long life and can steadily work continuously for a long period of time even in the atmosphere.
    Type: Grant
    Filed: November 20, 2008
    Date of Patent: March 19, 2013
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Hirofumi Kanda, Tadashi Iwamatsu, Toshihiro Tamura, Hiroyuki Hirakawa, Yoshio Ichii
  • Publication number: 20100307724
    Abstract: A heat exchanger (1) includes: a heat sink (3) which is in contact with a heating element (2); and an electron emitting element (4) which is provided so as to be separated from the heat sink (3) by a space and which provides electrons to the heat sink (3) via air in the space. The electron emitting element (4) includes: an electrode substrate (7); a thin-film electrode (9); a power supply (10) which applies a voltage between the electrode substrate (7) and the thin-film electrode (8); and an electron acceleration layer (8) which accelerates the electrons inside itself in response to the voltage applied by the power supply (10) so that the electrons are emitted from the thin-film electrode (9). The electron acceleration layer (8) is made at least partially of an insulating material. As a result, the heat exchanger (1) has a heat exchange capability which can be maintained and improved independently of a structure in which electric field concentration tends to occur.
    Type: Application
    Filed: February 19, 2009
    Publication date: December 9, 2010
    Inventors: Yoshio Ichii, Tadashi Iwamatsu, Hiroyuki Hirakawa, Hirofumi Kanda
  • Publication number: 20100278561
    Abstract: An electron emitting element (1) includes a substrate (2), an upper electrode (3), and a fine particle layer (4) sandwiched between the substrate (2) and the upper electrode (3). The fine particle layer (4) includes metal fine particles (6) with high resistance to oxidation, and insulating fine particles (5) larger in size than the metal fine particles (6). The electron emitting element (1) can steadily emit electrons not only in vacuum but also in the atmosphere. Further, the electron emitting element (1) can work without electric discharge so that harmful substances such as ozone, NOx, or the like are scarcely generated. Accordingly, degradation of the electron emitting element (1) due to oxidation does not occur. Therefore, the electron emitting element (1) has a long life and can steadily work continuously for a long period of time even in the atmosphere.
    Type: Application
    Filed: November 20, 2008
    Publication date: November 4, 2010
    Inventors: Hirofumi Kanda, Tadashi Iwamatsu, Toshihiro Tamura, Hiroyuki Hirakawa, Yoshio Ichii
  • Publication number: 20100003614
    Abstract: The resin coated carrier is used with a toner in which an external additive having an average primary particle size of 50 nm or more is added to a toner particle, and has a carrier core and a resin coating layer on the surface of the carrier core. In the resin coated carrier, the following expression (1) is satisfied: 0.5??log {(A/C)/(B/C)}?2.5 ??(1) wherein A represents a volume resistance value (Q/cm) of the resin coated carrier in an electric field of 1000 V/cm that is obtained by conducting a stirring test, B represents a volume resistance value (?/cm) of the resin coated carrier in an electric field of 1000 V/cm before the stirring test, and C represents a volume resistance value (?/cm) of the carrier core in an electric field of 1000 V/cm.
    Type: Application
    Filed: July 1, 2009
    Publication date: January 7, 2010
    Inventors: Osamu Wada, Takanori Kamoto, Tadashi Iwamatsu, Nobuyuki Yoshioka, Hiroyuki Hirakawa, Yoshinori Mutoh, Takashi Hara, Hirofumi Kanda, Yoshio Ichii