Patents by Inventor Yoshio Takami

Yoshio Takami has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230273155
    Abstract: A wire rope inspection device (100) is provided with a first detection coil (30) and a second detection coil (40), and a processing unit (61). The second detection coil is arranged to be inclined to the first detection coil when viewed from a direction (X-direction) perpendicular to a first direction (Z-direction) along which the first detection coil moves relative to the wire rope (W). The processing unit identifies an abnormality position of the wire rope in the first direction based on a detection signal detected by the first detection coil and identifies an area of the abnormality position of the wire rope in a cross-section based on a detection signal detected by the second detection coil.
    Type: Application
    Filed: March 12, 2021
    Publication date: August 31, 2023
    Inventor: Yoshio TAKAMI
  • Publication number: 20230018455
    Abstract: A wire rope inspection system is provided with: an excitation unit configured to apply a magnetic flux to a wire rope that is an inspection target; a detection unit configured to detect a magnetic flux of the wire rope to which the magnetic flux has been applied by the excitation unit; a detachable unit configured to be detachably mounted to a stationary unit fixed in proximity to the wire rope, the detachable unit being provided with at least the detection unit; and a positioning mechanism configured to position the detachable unit with reference to the stationary unit such that the detection unit is arranged at a predetermined position with reference to the wire rope.
    Type: Application
    Filed: April 26, 2022
    Publication date: January 19, 2023
    Inventors: Hajime TAKEMOTO, Yoshio TAKAMI
  • Patent number: 11435316
    Abstract: This magnetic body management system (100) includes: a first magnetic body inspection device (1) configured to acquire a detection signal (DS) before the magnetic body (MM) is installed at a location of use; a second magnetic body inspection device (2) configured to acquire a detection signal (DS) after the magnetic body (MM) has been installed at the location of use, the second magnetic body inspection device (2) having the same method as that of the first magnetic body inspection device (1); a server (3); a first transmission unit (4); and a second transmission unit (5). The server (3) is configured to estimate a deterioration state of the magnetic body (MM) based on at least the first magnetic body information (10) and the second magnetic body information (11).
    Type: Grant
    Filed: October 16, 2018
    Date of Patent: September 6, 2022
    Assignee: Shimadzu Corporation
    Inventors: Hiroaki Kodama, Mitsuo Yamashita, Satoshi Akasegawa, Taketoshi Noji, Yoshio Takami
  • Publication number: 20210382008
    Abstract: This magnetic body management system (100) includes: a first magnetic body inspection device (1) configured to acquire a detection signal (DS) before the magnetic body (MM) is installed at a location of use; a second magnetic body inspection device (2) configured to acquire a detection signal (DS) after the magnetic body (MM) has been installed at the location of use, the second magnetic body inspection device (2) having the same method as that of the first magnetic body inspection device (1); a server (3); a first transmission unit (4); and a second transmission unit (5). The server (3) is configured to estimate a deterioration state of the magnetic body (MM) based on at least the first magnetic body information (10) and the second magnetic body information (11).
    Type: Application
    Filed: October 16, 2018
    Publication date: December 9, 2021
    Inventors: Hiroaki KODAMA, Mitsuo YAMASHITA, Satoshi AKASEGAWA, Taketoshi NOJI, Yoshio TAKAMI
  • Patent number: 9322786
    Abstract: An inspection apparatus 1 for solar cells 100 includes: a visible light source 11 adapted to irradiate visible light; a CCD camera 15 adapted to measure a reflection image based on the visible light reflected by an antireflective film of a solar cell 100; an infrared light source 13 adapted to irradiate the solar cell 100 with infrared light; and a CCD camera 16 adapted to measure a transmission image based on the infrared light transmitting through the solar cell 100. In the inspection apparatus 1, as a result of comparing the reflection image and the transmission image with each other, of areas respectively appearing as bright spots in the reflection image, an area appearing as a dark spot in the transmission image is determined as an area including a particle, whereas of the areas respectively appearing as the bright spots in the reflection image, an area other than the area determined as the area including the particle is determined as an area including a pinhole.
    Type: Grant
    Filed: February 10, 2012
    Date of Patent: April 26, 2016
    Assignee: SHIMADZU CORPORATION
    Inventor: Yoshio Takami
  • Publication number: 20150160138
    Abstract: An inspection apparatus 1 for solar cells 100 includes: a visible light source 11 adapted to irradiate visible light; a CCD camera 15 adapted to measure a reflection image based on the visible light reflected by an antireflective film of a solar cell 100; an infrared light source 13 adapted to irradiate the solar cell 100 with infrared light; and a CCD camera 16 adapted to measure a transmission image based on the infrared light transmitting through the solar cell 100. In the inspection apparatus 1, as a result of comparing the reflection image and the transmission image with each other, of areas respectively appearing as bright spots in the reflection image, an area appearing as a dark spot in the transmission image is determined as an area including a particle, whereas of the areas respectively appearing as the bright spots in the reflection image, an area other than the area determined as the area including the particle is determined as an area including a pinhole.
    Type: Application
    Filed: February 10, 2012
    Publication date: June 11, 2015
    Applicant: SHIMADZU CORPORATION
    Inventor: Yoshio Takami
  • Patent number: 7964035
    Abstract: A crystallization apparatus is provided. The crystallization apparatus includes a visible light source capable of obtaining high energy density output therein. A visible light irradiation system is formed by a plurality of visible laser beam sources arranged in a two-dimensional array. The visible light irradiation system includes a light intensity distribution forming apparatus for patterning light intensity distribution of a plurality of visible laser beams emitted by each visible laser beam source, and an imaging optical system for imaging the light having the light intensity distribution patterned by the light intensity distribution forming apparatus onto an irradiated region on the processed substrate. The visible laser beams emitted by a plurality of solid lasers or semiconductor lasers are overlapped in the light intensity distribution forming apparatus that satisfies an imaging position relationship in an optical axis with respect to the processed substrate.
    Type: Grant
    Filed: October 26, 2007
    Date of Patent: June 21, 2011
    Assignee: Shimadzu Corporation
    Inventors: Noritaka Akita, Yoshio Takami
  • Patent number: 7964036
    Abstract: A crystallization apparatus is provided. In the crystallization apparatus, a light intensity distribution formed by a light modulation device or a metal aperture and transferred to a processed substrate can be visualized. The crystallization apparatus has an ultraviolet (UV) irradiation system and a visible light irradiation system. The UV irradiation system irradiates pulses of laser beam in the UV range to the processed substrate. The visible light irradiation system continuously irradiates a visible light laser beam on the same irradiated region on the processed substrate. In a melted region resulted from the uniform irradiation of the laser beam in the UV range, the light intensity distribution of the visible laser beam is used to form crystal growth. The crystallization apparatus irradiates pulses of the laser beam in the UV range to melt the processed substrate, and continuously irradiates the visible light laser beam to crystallize the processed substrate.
    Type: Grant
    Filed: October 29, 2007
    Date of Patent: June 21, 2011
    Assignee: Shimadzu Corporation
    Inventors: Noritaka Akita, Yoshio Takami
  • Patent number: 7847214
    Abstract: A laser crystallization apparatus and a crystallization method with a high throughput are provided. Laser light having a predetermined light intensity distribution is irradiated to a semiconductor film to melt and crystallize, wherein a irradiation position is placed very quickly and with a high positional accuracy, thereby forming the semiconductor film having a large crystal grain size. A laser crystallization apparatus according to one aspect of the present invention comprises a crystallizing laser light source, a phase shifter modulating pulse laser light to have the predetermined light intensity distribution, an excimer imaging optical system, a substrate holding stage mounting a processing substrate and continuously moving in the predetermined direction, a position measuring means, and a signal generating means indicating generation of the pulse laser light based on the position measurement of the stage by the position measuring means.
    Type: Grant
    Filed: December 6, 2006
    Date of Patent: December 7, 2010
    Assignee: Advanced LCD Technologies Development Center Co., Ltd.
    Inventors: Yoshio Takami, Tatsuhiro Taguchi
  • Patent number: 7642482
    Abstract: A laser crystallization apparatus and a crystallization method with a high throughput are provided. Laser light having a predetermined light intensity distribution is irradiated to a semiconductor film to melt and crystallize, wherein a irradiation position is positioned very quickly and with a high positional accuracy, thereby forming the semiconductor film having a large crystal grain size. A laser crystallization apparatus according to one aspect of the present invention comprises a laser light source, a phase shifter modulating laser light to give a predetermined light intensity distribution, marks provided on the substrate, a substrate holding stage moving in a predetermined direction, mark measuring means measuring a time at which the mark passes a predetermined position, and signal generating means generating a trigger signal indicating the irradiation of the laser light based on the measured time.
    Type: Grant
    Filed: December 11, 2006
    Date of Patent: January 5, 2010
    Assignees: Advanced LCD Technologies Development Center Co., Ltd., Shimadzu Corporation
    Inventors: Yoshio Takami, Tatsuhiro Taguchi
  • Patent number: 7550694
    Abstract: A laser anneal apparatus is provided with a laser source; a homogenizing optical system disposed in an optical path of laser light emitted from the laser source to homogenize an intensity distribution of the laser light in a section which is perpendicular to the optical path; a phase shifter disposed in the optical path of the laser light passed through the homogenizing optical system to produce an intensity distribution pattern of the laser light in the section which is perpendicular to the optical path; a photoreceptor device disposed in the optical path of the laser light passed through the phase shifter to intercept a part of the laser light and to measure a quantity of the intercepted laser light; and an image-forming optical system disposed in the optical path of the laser light passed through the photoreceptor device to focus the laser light on a substrate to be treated.
    Type: Grant
    Filed: December 13, 2005
    Date of Patent: June 23, 2009
    Assignee: Advanced LCD Technologies Development Center Co., Ltd.
    Inventors: Masayuki Jyumonji, Yukio Taniguchi, Masakiyo Matsumura, Masato Hiramatsu, Yoshio Takami
  • Publication number: 20090017642
    Abstract: A laser crystallization apparatus which capable of correcting both shift in imaging position caused by thermal lens effect of the imaging optical system and shift due to flatness of the substrate comprises an crystallization optical system which irradiates laser light to a thin film disposed on the substrate to melt and crystallize an irradiated region of the thin film, the apparatus comprises a measurement light source which is disposed outside a light path of the laser light, and which emits measurement light being illuminated the irradiated region of the thin film, and a substrate height correction system which illuminates the thin film with the measurement light through an imaging optical system in the crystallization optical system, and which detects the reflected measurement light from the thin film.
    Type: Application
    Filed: September 12, 2008
    Publication date: January 15, 2009
    Inventor: Yoshio TAKAMI
  • Publication number: 20080290300
    Abstract: A crystallization apparatus is provided. In the crystallization apparatus, a light intensity distribution formed by a light modulation device or a metal aperture and transferred to a processed substrate can be visualized. The crystallization apparatus has an ultraviolet (UV) irradiation system and a visible light irradiation system. The UV irradiation system irradiates pulses of laser beam in the UV range to the processed substrate. The visible light irradiation system continuously irradiates a visible light laser beam on the same irradiated region on the processed substrate. In a melted region resulted from the uniform irradiation of the laser beam in the UV range, the light intensity distribution of the visible laser beam is used to form crystal growth. The crystallization apparatus irradiates pulses of the laser beam in the UV range to melt the processed substrate, and continuously irradiates the visible light laser beam to crystallize the processed substrate.
    Type: Application
    Filed: October 29, 2007
    Publication date: November 27, 2008
    Applicant: SHIMADZU CORPORATION
    Inventors: Noritaka AKITA, Yoshio TAKAMI
  • Publication number: 20080293258
    Abstract: A crystallization apparatus is provided. The crystallization apparatus includes a visible light source capable of obtaining high energy density output therein. A visible light irradiation system is formed by a plurality of visible laser beam sources arranged in a two-dimensional array. The visible light irradiation system includes a light intensity distribution forming apparatus for patterning light intensity distribution of a plurality of visible laser beams emitted by each visible laser beam source, and an imaging optical system for imaging the light having the light intensity distribution patterned by the light intensity distribution forming apparatus onto an irradiated region on the processed substrate. The visible laser beams emitted by a plurality of solid lasers or semiconductor lasers are overlapped in the light intensity distribution forming apparatus that satisfies an imaging position relationship in an optical axis with respect to the processed substrate.
    Type: Application
    Filed: October 26, 2007
    Publication date: November 27, 2008
    Applicant: SHIMADZU CORPORATION
    Inventors: Noritaka AKITA, Yoshio TAKAMI
  • Patent number: 7427764
    Abstract: A laser crystallization apparatus which capable of correcting both shift in imaging position caused by thermal lens effect of the imaging optical system and shift due to flatness of the substrate comprises an crystallization optical system which irradiates laser light to a thin film disposed on the substrate to melt and crystallize an irradiated region of the thin film, the apparatus includes a measurement light source which is disposed outside a light path of the laser light, and which emits measurement light being illuminated the irradiated region of the thin film, and a substrate height correction system which illuminates the thin film with the measurement light through an imaging optical system in the crystallization optical system, and which detects the reflected measurement light from the thin film.
    Type: Grant
    Filed: April 13, 2005
    Date of Patent: September 23, 2008
    Assignee: Advanced LCD Technologies DEvelopmet Center Co., Ltd.
    Inventor: Yoshio Takami
  • Patent number: 7369215
    Abstract: A laser crystallization apparatus has a light source, a phase shifter which modulates a laser light from the light source, an illumination system which is provided between the light source and the phase shifter, homogenizes a light intensity of the laser light from the light source and illuminates the phase shifter with the homogenized light, a stage which supports a non-single-crystal semiconductor, an image formation optical system having a plurality of optical members which is provided between the semiconductor on the stage and the phase shifter and forms an image of the modulated laser beam at a desired part on the semiconductor, and a temperature adjustment portion which adjusts a temperature of the optical member by heating or cooling the optical members of the image formation optical system.
    Type: Grant
    Filed: August 1, 2005
    Date of Patent: May 6, 2008
    Assignee: Advanced LCD Technologies Development Center Co., Ltd.
    Inventor: Yoshio Takami
  • Publication number: 20080083928
    Abstract: A manufacturing method of an electronic device includes positioning a processed substrate with respect to a substrate stage of a crystallization apparatus and supporting it with at least one positioning mark previously provided on the processed substrate being used as a references, applying a modulated light beam to a predetermined area of the processed substrate supported by the substrate stage and crystallizing the area, and forming at least one circuit element in the crystallized area of the processed substrate subjected to positioning with the positioning mark being used as a reference.
    Type: Application
    Filed: November 21, 2007
    Publication date: April 10, 2008
    Inventors: Noritaka Akita, Yoshio Takami
  • Publication number: 20080073573
    Abstract: A laser crystallization apparatus and a crystallization method with a high throughput are provided. Laser light having a predetermined light intensity distribution is irradiated to a semiconductor film to melt and crystallize, wherein a irradiation position is placed very quickly and with a high positional accuracy, thereby forming the semiconductor film having a large crystal grain size. A laser crystallization apparatus according to one aspect of the present invention comprises a crystallizing laser light source, a phase shifter modulating pulse laser light to have the predetermined light intensity distribution, an excimer imaging optical system, a substrate holding stage mounting a processing substrate and continuously moving in the predetermined direction, a position measuring means, and a signal generating means indicating generation of the pulse laser light based on the position measurement of the stage by the position measuring means.
    Type: Application
    Filed: December 6, 2006
    Publication date: March 27, 2008
    Inventors: Yoshio Takami, Tatsuhiro Taguchi
  • Patent number: 7345746
    Abstract: In-situ monitoring of a crystallization state is used for laser anneal processing for applying an energy line irradiation for at least one of crystallization of a thin film and promotion of the crystallization. A method is characterized by simultaneously irradiating at least a plurality of monitoring places in a region having a predetermined area of at least one of the surface and the underside of the thin film by a monitor light for monitoring a crystallization state of the thin film at least during or after of before, during and after the energy line irradiation directly or through a substrate, and measuring a temporal change of the intensity of at least one of a reflected light and a transmitted light, from the surface or the underside of the thin film, of the monitor light as a light intensity distribution related to the positions of the monitoring places. Apparatus according to the invention perform such methods.
    Type: Grant
    Filed: September 1, 2006
    Date of Patent: March 18, 2008
    Assignee: Kabushiki Kaisha Ekisho Sentan
    Inventor: Yoshio Takami
  • Patent number: 7318865
    Abstract: A manufacturing method of an electronic device includes positioning a processed substrate with respect to a substrate stage of a crystallization apparatus and supporting it with at least one positioning mark previously provided on the processed substrate being used as a references, applying a modulated light beam to a predetermined area of the processed substrate supported by the substrate stage and crystallizing the area, and forming at least one circuit element in the crystallized area of the processed substrate subjected to positioning with the positioning mark being used as a reference.
    Type: Grant
    Filed: December 8, 2004
    Date of Patent: January 15, 2008
    Assignee: Advanced LCD Technologies Development Center Co., Ltd.
    Inventors: Noritaka Akita, Yoshio Takami