Patents by Inventor Yoshio Yamashita

Yoshio Yamashita has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11950365
    Abstract: A flexible printed circuit board includes: a base film having a hole for forming a through hole; and a coil-shaped wiring layer layered on at least one surface side of the base film, wherein the wiring layer includes a land portion arranged at an inner peripheral surface of the hole and at a peripheral portion of the hole of the base film, and a winding portion arranged in a spiral shape with the land portion as an inside end portion or an outside end portion, wherein the winding portion includes a first winding portion that is an outermost circumference and a second winding portion that is inside relative to the outermost circumference, and wherein a ratio of an average thickness of the land portion to an average thickness of the second winding portion is 1.1 or more and 5 or less.
    Type: Grant
    Filed: December 16, 2020
    Date of Patent: April 2, 2024
    Assignees: SUMITOMO ELECTRIC INDUSTRIES, LTD., SUMITOMO ELECTRIC PRINTED CIRCUITS, INC.
    Inventors: Shoichiro Sakai, Koji Nitta, Yoshio Oka, Junichi Motomura, Masanao Yamashita
  • Patent number: 11795884
    Abstract: A control device is applied to an internal combustion engine equipped with an electric heating catalyst system provided with an EHC. The control device executes a preheating process to warm up an exhaust gas reduction catalyst prior to a start of the internal combustion engine by supplying electric power to the EHC, when the control device determines that a temperature of the exhaust gas reduction catalyst is lower than an activation temperature. The control device executes a determination process for determining whether water is adhered to a catalyst carrier. The control device starts the internal combustion engine without executing the preheating process when the control device determines by the determination process that water is adhered to the catalyst carrier, even when the control device determines that the temperature of the exhaust gas reduction catalyst is lower than the activation temperature.
    Type: Grant
    Filed: August 29, 2022
    Date of Patent: October 24, 2023
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Shigemasa Hirooka, Koichi Kitaura, Yoshio Yamashita, Shingo Korenaga, Katsuhiro Ito, Hikaru Shiozawa
  • Publication number: 20230094717
    Abstract: A control device is applied to an internal combustion engine equipped with an electric heating catalyst system provided with an EHC. The control device executes a preheating process to warm up an exhaust gas reduction catalyst prior to a start of the internal combustion engine by supplying electric power to the EHC, when the control device determines that a temperature of the exhaust gas reduction catalyst is lower than an activation temperature. The control device executes a determination process for determining whether water is adhered to a catalyst carrier. The control device starts the internal combustion engine without executing the preheating process when the control device determines by the determination process that water is adhered to the catalyst carrier, even when the control device determines that the temperature of the exhaust gas reduction catalyst is lower than the activation temperature.
    Type: Application
    Filed: August 29, 2022
    Publication date: March 30, 2023
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Shigemasa HIROOKA, Koichi KITAURA, Yoshio YAMASHITA, Shingo KORENAGA, Katsuhiro ITO, Hikaru SHIOZAWA
  • Patent number: 11492941
    Abstract: A controller is applied to an internal combustion engine in which an electrically heated catalyst that is heated when supplied with electric power is installed in an exhaust passage. The controller is configured to perform a preheating process of warming up a first exhaust catalyst by supplying electric power to the electrically heated catalyst through control over a power supply before a start of the internal combustion engine. The controller is configured to, when an insulation resistance of the electrically heated catalyst at a start of the preheating process is lower than a threshold, perform the preheating process while decreasing a voltage supplied to the electrically heated catalyst.
    Type: Grant
    Filed: March 23, 2022
    Date of Patent: November 8, 2022
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Shigemasa Hirooka, Koichi Kitaura, Yoshio Yamashita, Shingo Korenaga, Katsuhiro Ito, Hikaru Shiozawa
  • Publication number: 20220332305
    Abstract: A control device starts supply of electric power to a catalyst device when a state of charge of a main battery decreases to a value which is equal to or less than an optimal power-supply state of charge set based on a travel load while a vehicle is traveling in an EV travel mode. The control device corrects input electric power of the catalyst device to a value less than the value at the time of starting of supply of electric power when the travel load decreases after the supply of electric power has been started.
    Type: Application
    Filed: April 4, 2022
    Publication date: October 20, 2022
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Shigemasa HIROOKA, Koichi KITAURA, Yoshio YAMASHITA, Shingo KORENAGA, Katsuhiro ITO, Hikaru SHIOZAWA
  • Publication number: 20220333516
    Abstract: A controller is applied to an internal combustion engine in which an electrically heated catalyst that is heated when supplied with electric power is installed in an exhaust passage. The controller is configured to perform a preheating process of warming up a first exhaust catalyst by supplying electric power to the electrically heated catalyst through control over a power supply before a start of the internal combustion engine. The controller is configured to, when an insulation resistance of the electrically heated catalyst at a start of the preheating process is lower than a threshold, perform the preheating process while decreasing a voltage supplied to the electrically heated catalyst.
    Type: Application
    Filed: March 23, 2022
    Publication date: October 20, 2022
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Shigemasa HIROOKA, Koichi KITAURA, Yoshio YAMASHITA, Shingo KORENAGA, Katsuhiro ITO, Hikaru SHIOZAWA
  • Publication number: 20200285808
    Abstract: A highly precise synonym determination is performed, and a synonym dictionary is automatically created from a text. The text is segmented into multiple words. A topic classification is carried out, a topic word is selected from the multiple words, and a reference word characterizing each topic is extracted from the topic word. Multiple vectors respectively expressing the multiple words are obtained. A similar word is selected from the multiple words, such that the similarity between the vector expressing the reference word and the vector expressing each similar word exceeds a set reference. The synonym dictionary is created in which at least a part of the similar word has been registered.
    Type: Application
    Filed: June 29, 2018
    Publication date: September 10, 2020
    Inventors: Akiko YOSHIDA, Kiyotaka KASUBUCHI, Takao YOSHIWA, Yoshio YAMASHITA
  • Patent number: 10344645
    Abstract: The disclosure is intended to oxidize PM deposited in a filter in a suitable manner. Provision is made for a filter of wall flow type, a temperature raising unit to raise the temperature of the filter from a downstream side thereof, an exhaust gas shut-off valve, and a controller. The controller controls a flow of exhaust gas in the filter by once fully closing the exhaust gas shut-off valve and then fully opening it when the flow rate of the exhaust gas is equal to or larger than a predetermined flow rate, so as to cause PM to move to a downstream side portion in the filter in the direction of flow of exhaust gas, and carries out regeneration processing which oxidizes the PM by using the temperature raising unit after the controller has caused the PM to move to the downstream side portion of the filter.
    Type: Grant
    Filed: January 3, 2018
    Date of Patent: July 9, 2019
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Yoshio Yamashita
  • Patent number: 10309285
    Abstract: An exhaust gas control system for an internal combustion engine, before execution of a filter regeneration process, executes a pre-regeneration process that is a process of raising a temperature of a filter to a second target temperature lower than a first target temperature and increasing the concentration of NO2 contained in exhaust gas flowing into the filter for a predetermined period. The first target temperature during execution of the filter regeneration process in the case where a speed of change in a detected value of a differential pressure sensor during execution of the pre-regeneration process is high is set so as to be lower than the first target temperature in the case where the speed of change is low.
    Type: Grant
    Filed: January 26, 2017
    Date of Patent: June 4, 2019
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Daichi Imai, Hiromasa Nishioka, Kiyoshi Fujiwara, Yoshio Yamashita, Kouta Tanaka
  • Patent number: 10302000
    Abstract: An exhaust gas control system for an internal combustion engine, before execution of a filter regeneration process, executes a pre-regeneration process that is a process of raising a temperature of a filter to a second target temperature lower than a first target temperature and increasing the concentration of NO2 contained in exhaust gas flowing into the filter for a predetermined period. An execution time of the filter regeneration process when a physical quantity that correlates with a speed of change in a detected value of a differential pressure sensor during execution of the pre-regeneration process is large is shorter than an execution time of the filter regeneration process when the physical quantity is small.
    Type: Grant
    Filed: January 26, 2017
    Date of Patent: May 28, 2019
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Daichi Imai, Hiromasa Nishioka, Kiyoshi Fujiwara, Yoshio Yamashita, Kouta Tanaka
  • Publication number: 20180216511
    Abstract: The disclosure is intended to oxidize PM deposited in a filter in a suitable manner. Provision is made for a filter of wall flow type, a temperature raising unit to raise the temperature of the filter from a downstream side thereof, an exhaust gas shut-off valve, and a controller. The controller controls a flow of exhaust gas in the filter by once fully closing the exhaust gas shut-off valve and then fully opening it when the flow rate of the exhaust gas is equal to or larger than a predetermined flow rate, so as to cause PM to move to a downstream side portion in the filter in the direction of flow of exhaust gas, and carries out regeneration processing which oxidizes the PM by using the temperature raising unit after the controller has caused the PM to move to the downstream side portion of the filter.
    Type: Application
    Filed: January 3, 2018
    Publication date: August 2, 2018
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventor: Yoshio YAMASHITA
  • Patent number: 9988962
    Abstract: An exhaust emission control system of an internal combustion engine may include a filter, a temperature raising device, a differential pressure detecting device, and an electronic control unit. The filter may include a first region as a part of the filter, and a second region as another part of the filter. The electronic control unit may be configured to calculate a first deposition amount such that a calculated deposition amount is larger as a proportion of a magnitude of the first differential pressure reduction amount to the length of the first oxidation period is larger. The electronic control unit may be configured to calculate an amount of the particulate matter deposited in the second region based on a length of the second oxidation period and a second differential pressure reduction amount.
    Type: Grant
    Filed: March 16, 2016
    Date of Patent: June 5, 2018
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Daichi Imai, Hiromasa Nishioka, Kiyoshi Fujiwara, Yoshio Yamashita
  • Patent number: 9822682
    Abstract: An exhaust gas purification apparatus for an internal combustion engine, capable of carrying out oxidation removal of PM deposited in a filter as a whole in an efficient manner, includes a filter arranged in an exhaust passage of the internal combustion engine and having an oxidation catalyst supported in at least an upstream side portion thereof, and a heating device arranged so as to be able to heat the upstream side portion of the filter irrespective of oxidation reaction heat of the oxidation catalyst, wherein when filter upstream regeneration processing to oxidize and remove deposition PM in the upstream side portion of the filter is carried out by controlling a heating device, an amount of decrease of the upstream side deposition PM by the filter upstream regeneration processing is reflected on an amount of filter PM deposition in the ordinary filter regeneration processing which oxidizes and removes the deposition PM in the entire filter by means of oxidation reaction heat of unburnt fuel generated by
    Type: Grant
    Filed: October 5, 2015
    Date of Patent: November 21, 2017
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventor: Yoshio Yamashita
  • Patent number: 9810165
    Abstract: An internal combustion engine includes a control unit determining the occurrence or non-occurrence of dew condensation in a tip portion of a nozzle based on a nozzle heat receiving amount of an injector and a nozzle tip temperature of the injector at a point in time when ignition is turned OFF and performing nozzle corrosion prevention control when the dew condensation is determined to occur in the nozzle tip portion. The control unit calculates a nozzle tip temperature reduction rate based on the nozzle heat receiving amount, calculates a dew point arrival time based on the reduction rate, and determines the occurrence or non-occurrence of the dew condensation in the nozzle tip portion based on the dew point arrival time.
    Type: Grant
    Filed: January 15, 2014
    Date of Patent: November 7, 2017
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Masato Ikemoto, Masayoshi Nakagawa, Takashi Matsumoto, Yoshio Yamashita
  • Publication number: 20170211451
    Abstract: An exhaust gas control system for an internal combustion engine, before execution of a filter regeneration process, executes a pre-regeneration process that is a process of raising a temperature of a filter to a second target temperature lower than a first target temperature and increasing the concentration of NO2 contained in exhaust gas flowing into the filter for a predetermined period. An execution time of the filter regeneration process when a physical quantity that correlates with a speed of change in a detected value of a differential pressure sensor during execution of the pre-regeneration process is large is shorter than an execution time of the filter regeneration process when the physical quantity is small.
    Type: Application
    Filed: January 26, 2017
    Publication date: July 27, 2017
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Daichi IMAI, Hiromasa NISHIOKA, Kiyoshi FUJIWARA, Yoshio YAMASHITA, Kouta TANAKA
  • Publication number: 20170211452
    Abstract: An exhaust gas control system for an internal combustion engine, before execution of a filter regeneration process, executes a pre-regeneration process that is a process of raising a temperature of a filter to a second target temperature lower than a first target temperature and increasing the concentration of NO2 contained in exhaust gas flowing into the filter for a predetermined period. The first target temperature during execution of the filter regeneration process in the case where a speed of change in a detected value of a differential pressure sensor during execution of the pre-regeneration process is high is set so as to be lower than the first target temperature in the case where the speed of change is low.
    Type: Application
    Filed: January 26, 2017
    Publication date: July 27, 2017
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Daichi IMAI, Hiromasa NISHIOKA, Kiyoshi FUJIWARA, Yoshio YAMASHITA, Kouta TANAKA
  • Patent number: 9611811
    Abstract: The influenced of condensed water on an EGR device is alleviated. A device (100) that controls a cooling system including adjusting means for being able to adjust a circulation amount of coolant in a first flow passage, including an engine cooling flow passage, an EGR cooling flow passage and a radiator flow passage, and a second flow passage, including the engine cooling flow passage, the EGR cooling flow passage and a bypass flow passage and not including the radiator flow passage, includes: measuring means for measuring a temperature of the coolant; limiting means for limiting circulation of the coolant at starting an internal combustion engine; and control means for circulating the coolant preferentially through the second flow passage via control over the adjusting means based on the measured temperature in a period in which circulation of the coolant is limited.
    Type: Grant
    Filed: December 19, 2011
    Date of Patent: April 4, 2017
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Nobumoto Ohashi, Taro Aoyama, Naoya Okamoto, Yoshio Yamashita, Yuki Haba, Hajime Takagawa, Koki Uno, Naoki Takeuchi, Masashi Shinoda, Teruhiko Miyake, Koji Nakayama
  • Publication number: 20160273436
    Abstract: An exhaust emission control system of an internal combustion engine may include a filter, a temperature raising device, a differential pressure detecting device, and an electronic control unit. The filter may include a first region as a part of the filter, and a second region as another part of the filter. The electronic control unit may be configured to calculate a first deposition amount such that a calculated deposition amount is larger as a proportion of a magnitude of the first differential pressure reduction amount to the length of the first oxidation period is larger. The electronic control unit may be configured to calculate an amount of the particulate matter deposited in the second region based on a length of the second oxidation period and a second differential pressure reduction amount.
    Type: Application
    Filed: March 16, 2016
    Publication date: September 22, 2016
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Daichi IMAI, Hiromasa NISHIOKA, Kiyoshi FUJIWARA, Yoshio YAMASHITA
  • Patent number: 9442475
    Abstract: A computer-based method and system brings together data from two business domains: real-time actual plant status operation data and predictive process simulation data based upon a design specification. This method and system correlates the plant data and the simulation data, and displays the results side-by-side for the user. The results assist the user, to determine whether the plant is operating properly, and to make further improvements to both the plant assets and to the simulation models. The invention assists with monitoring, maintaining, trouble shooting, and problem solving of plant operation. The invention facilitates a progressive visual collaborative environment between plant operation and process engineering teams, where engineers from respective domains may socialize and trouble shoot problems.
    Type: Grant
    Filed: May 2, 2013
    Date of Patent: September 13, 2016
    Assignee: Aspen Technology, Inc.
    Inventors: Ashok R. Subramanian, Simon Lingard, Yoshio Yamashita
  • Publication number: 20160097310
    Abstract: An exhaust gas purification apparatus for an internal combustion engine, capable of carrying out oxidation removal of PM deposited in a filter as a whole in an efficient manner, includes a filter arranged in an exhaust passage of the internal combustion engine and having an oxidation catalyst supported in at least an upstream side portion thereof, and a heating device arranged so as to be able to heat the upstream side portion of the filter irrespective of oxidation reaction heat of the oxidation catalyst, wherein when filter upstream regeneration processing to oxidize and remove deposition PM in the upstream side portion of the filter is carried out by controlling a heating device, an amount of decrease of the upstream side deposition PM by the filter upstream regeneration processing is reflected on an amount of filter PM deposition in the ordinary filter regeneration processing which oxidizes and removes the deposition PM in the entire filter by means of oxidation reaction heat of unburnt fuel generated by
    Type: Application
    Filed: October 5, 2015
    Publication date: April 7, 2016
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventor: Yoshio YAMASHITA