Patents by Inventor Yoshitaka Mori

Yoshitaka Mori has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10473883
    Abstract: There are provided a variable magnification optical system and a control method thereof which are capable of relatively accurately adjusting a positional relationship between a variable magnification optical device and an imaging surface of an imaging device according to a zoom amount. A zoom lens included in the variable magnification optical device is positioned at a telephoto end and a wide angle end, and shift amounts ?S1 and ?S2, tilt angles ?1 and ?2, rotation angles ?1 and ?2, and focusing adjustment amounts ?1 and ?2 of the variable magnification optical device are set by a user and are stored. In a case where a zoom amount of the zoom lens is set to a desired value by the user, a shift amount corresponding to the set zoom amount is calculated by using the stored shift amounts ?S1 and ?S2. The positional relationship between the variable magnification optical device and the imaging surface of the imaging device is adjusted so as to have the calculated shift amount.
    Type: Grant
    Filed: September 14, 2018
    Date of Patent: November 12, 2019
    Assignee: FUJIFILM Corporation
    Inventors: Shinichi Shimotsu, Yoshitaka Mori, Takayuki Matsuura
  • Publication number: 20190011662
    Abstract: There are provided a variable magnification optical system and a control method thereof which are capable of relatively accurately adjusting a positional relationship between a variable magnification optical device and an imaging surface of an imaging device according to a zoom amount. A zoom lens included in the variable magnification optical device is positioned at a telephoto end and a wide angle end, and shift amounts ?S1 and ?S2, tilt angles ?1 and ?2, rotation angles ?1 and ?2, and focusing adjustment amounts ?1 and ?2 of the variable magnification optical device are set by a user and are stored. In a case where a zoom amount of the zoom lens is set to a desired value by the user, a shift amount corresponding to the set zoom amount is calculated by using the stored shift amounts ?S1 and ?S2. The positional relationship between the variable magnification optical device and the imaging surface of the imaging device is adjusted so as to have the calculated shift amount.
    Type: Application
    Filed: September 14, 2018
    Publication date: January 10, 2019
    Applicant: FUJIFILM Corporation
    Inventors: SHINICHI SHIMOTSU, Yoshitaka MORI, Takayuki MATSUURA
  • Patent number: 10134492
    Abstract: The device has a target supply unit 4a for supplying a target 2a to a chamber 3a, a target monitor 5a for monitoring the target 2a present inside the chamber 3a, a laser light irradiator 6a for irradiating the target 2a present inside the chamber 3a, with laser light 8a, and a controller 7a. The target supply unit 4a emits the target 2a at a timing for emitting, that is controlled by the controller 7a, into a preset emission direction 3d inside the chamber 3a, and the controller 7a calculates an irradiation point 4d with the laser light 8a, calculates a timing for arriving of the target 2a at the irradiation point 4d, and makes the laser light irradiator 6a irradiate the target with the laser light, based on the irradiation point 4d and the timing for arriving.
    Type: Grant
    Filed: October 4, 2013
    Date of Patent: November 20, 2018
    Assignees: HAMAMATSU PHOTONICS K.K., TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Takashi Sekine, Toshiyuki Kawashima, Nakahiro Satoh, Yoneyoshi Kitagawa, Yoshitaka Mori, Katsuhiro Ishii, Ryohei Hanayama, Osamu Komeda, Yasuhiko Nishimura, Mitsutaka Kakeno
  • Patent number: 9901957
    Abstract: The vibration producing device includes a driving shaft being placed under slight rapid vibratory movements in its axial direction, a slight rapid vibratory movements producing member coupled with one end of the driving shaft for causing the driving shaft to be vibrated with the slight rapid vibratory movements, a casing for supporting at least either the driving shaft or the slight rapid vibratory movement producing member in such a manner that the driving shaft can be vibrated with the slight rapid vibratory movements in its axial direction, and a weight member to be coupled with the driving shaft in order to permit the weight member to move in its axial direction under the slight rapid vibratory movements of the driving shaft, wherein the casing is vibrated by allowing the weight member to be moved forwards and backwards alternately along the driving shaft in its axial direction.
    Type: Grant
    Filed: September 4, 2014
    Date of Patent: February 27, 2018
    Assignee: NEW SHICOH TECHNOLOGY CO., LTD.
    Inventors: Junichi Tada, Hiroki Narushima, Yoshitaka Mori
  • Publication number: 20170341990
    Abstract: A problem to be solved is to provide a method for processing zirconia without producing a monoclinic crystal. The solution is a method for processing zirconia, including the step of irradiating the zirconia with a laser with a pulse duration of 10?12 seconds to 10?15 seconds at an intensity of 1013 to 1015 W/cm2.
    Type: Application
    Filed: August 10, 2015
    Publication date: November 30, 2017
    Applicant: HAMAMATSU PHOTONICS K.K.
    Inventors: Osamu KOMEDA, Takuya KONDO, Toshiyuki KAWASHIMA, Hirofumi KAN, Nakahiro SATOH, Takashi SEKINE, Takashi KURITA, Atsushi SUNAHARA, Tomoyoshi MOTOHIRO, Tatsumi HIOKI, Hirozumi AZUMA, Shigeki OHSHIMA, Tsutomu KAJINO, Yoneyoshi KITAGAWA, Yoshitaka MORI, Katsuhiro ISHII, Ryohei HANAYAMA, Yasuhiko NISHIMURA, Eisuke MIURA
  • Patent number: 9805829
    Abstract: A target shell monitoring device 4 that monitors an attitude and a position of the target shell Tg1, a compression laser output device 5a that irradiates the target shell Tg1 with a compression laser light LS1, and a heating laser output device 6 that irradiates the target shell Tg1 with a heating laser light LS3 following the compression laser light LS1 are provided. The target shell Tg1 has a hollow spherical shell shape, includes an approximately spherical space Sp on an inner side thereof, includes at least one through hole H1 connecting an outer side thereof and the space Sp, and includes, on an outer surface Sf1 thereof, irradiation areas Ar1 and Ar2 to be irradiated with compression laser lights.
    Type: Grant
    Filed: October 10, 2013
    Date of Patent: October 31, 2017
    Assignees: HAMAMATSU PHOTONICS K.K., TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Takashi Sekine, Takashi Kurita, Toshiyuki Kawashima, Nakahiro Satoh, Hirofumi Kan, Yoneyoshi Kitagawa, Yoshitaka Mori, Katsuhiro Ishii, Kazuhisa Fujita, Ryohei Hanayama, Shinichiro Okihara, Atsushi Sunahara, Osamu Komeda, Naoki Nakamura, Yasuhiko Nishimura, Hirozumi Azuma
  • Patent number: 9800179
    Abstract: A linear driving device includes a slight rapid vibratory movements producing member coupled with one end of a driving shaft which causes said driving shaft to be moved in said an axial direction, a casing for supporting at least either said driving shaft or said slight rapid vibratory movements producing member so that said driving shaft can be moved in said axial direction; and a moving body to be coupled with said driving shaft so that said moving body can be moved in the axial direction. When said moving body moves from one end side toward the other end side of said driving shaft, a part of said moving body which forms the surface facing the other end side opposite to said one end of said moving body may hit against a component which stops said moving body from moving further toward the other end side of said driving shaft.
    Type: Grant
    Filed: September 19, 2014
    Date of Patent: October 24, 2017
    Assignee: NEW SHICOH TECHNOLOGY CO., LTD.
    Inventors: Junichi Tada, Hiroki Narushima, Yoshitaka Mori
  • Patent number: 9554034
    Abstract: The purpose of the present invention is to reduce the size of an image pick-up lens unit. A part of a bundle of rays representing subject optical images is deflected vertically downward by a polarization prism, and is further deflected forwards by a total reflection mirror. A bundle of rays totally reflected by the total reflection mirror is split in three directions by a tri-directional splitting prism. The bundle of rays, which is split in three directions, is incident on a first optical-path-length-difference image pick-up element, a second optical-path-length-difference image pick-up element, and a phase-difference image pick-up element included in a phase-difference AF optical system. Auto focus (AF) is performed on the basis of the optical path length difference from signals obtained from the optical-path-length-difference image pick-up elements, and AF is performed on the basis of the phase difference from a signal obtained from the phase-difference image pick-up element.
    Type: Grant
    Filed: December 4, 2015
    Date of Patent: January 24, 2017
    Assignee: FUJIFILM Corporation
    Inventor: Yoshitaka Mori
  • Patent number: 9363882
    Abstract: An object is to be capable of inducing a nuclear fusion reaction at a relatively high efficiency and downsize a device. A nuclear fusion device 1 of the present invention includes a nuclear fusion target 7 including a target substrate 7a containing deuterium or tritium and a thin-film layer 7b containing deuterium or tritium stacked on the target substrate 7a, a vacuum container 5 for storing the nuclear fusion target 7, and a laser unit 3 for irradiating two successive first and second pulsed laser lights P1, P2 toward the thin-film layer 7b of the nuclear fusion target 7, and the intensity of the first pulsed laser light P1 is set to a value that is smaller than that of the second pulsed laser light P2 and allows peeling of the thin-film layer 7b from the target substrate 7a.
    Type: Grant
    Filed: December 15, 2010
    Date of Patent: June 7, 2016
    Assignees: HAMAMATSU PHOTONICS K.K., TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Takashi Sekine, Toshiyuki Kawashima, Hirofumi Kan, Yoneyoshi Kitagawa, Yoshitaka Mori, Hirozumi Azuma, Tatsumi Hioki, Tomoyoshi Motohiro, Yasushi Miyamoto, Naoki Nakamura
  • Publication number: 20160088217
    Abstract: The purpose of the present invention is to reduce the size of an image pick-up lens unit. A part of a bundle of rays representing subject optical images is deflected vertically downward by a polarization prism, and is further deflected forwards by a total reflection mirror. A bundle of rays totally reflected by the total reflection mirror is split in three directions by a tri-directional splitting prism. The bundle of rays, which is split in three directions, is incident on a first optical-path-length-difference image pick-up element, a second optical-path-length-difference image pick-up element, and a phase-difference image pick-up element included in a phase-difference AF optical system. Auto focus (AF) is performed on the basis of the optical path length difference from signals obtained from the optical-path-length-difference image pick-up elements, and AF is performed on the basis of the phase difference from a signal obtained from the phase-difference image pick-up element.
    Type: Application
    Filed: December 4, 2015
    Publication date: March 24, 2016
    Applicant: FUJIFILM Corporation
    Inventor: Yoshitaka MORI
  • Publication number: 20150294744
    Abstract: The device has a target supply unit 4a for supplying a target 2a to a chamber 3a, a target monitor 5a for monitoring the target 2a present inside the chamber 3a, a laser light irradiator 6a for irradiating the target 2a present inside the chamber 3a, with laser light 8a, and a controller 7a. The target supply unit 4a emits the target 2a at a timing for emitting, that is controlled by the controller 7a, into a preset emission direction 3d inside the chamber 3a, and the controller 7a calculates an irradiation point 4d with the laser light 8a, calculates a timing for arriving of the target 2a at the irradiation point 4d, and makes the laser light irradiator 6a irradiate the target with the laser light, based on the irradiation point 4d and the timing for arriving.
    Type: Application
    Filed: October 4, 2013
    Publication date: October 15, 2015
    Applicants: HAMAMATSU PHOTONICS K.K., TOYOTA JIDOSHA KABUSHIKI KAISHA, The Graduate School for the Creation of New Photonics Industries
    Inventors: Takashi Sekine, Toshiyuki Kawashima, Nakahiro Satoh, Yoneyoshi Kitagawa, Yoshitaka Mori, Katsuhiro Ishii, Ryohei Hanayama, Osamu Komeda, Yasuhiko Nishimura, Mitsutaka Kakeno
  • Publication number: 20150270019
    Abstract: A target shell monitoring device 4 that monitors an attitude and a position of the target shell Tg1, a compression laser output device 5a that irradiates the target shell Tg1 with a compression laser light LS1, and a heating laser output device 6 that irradiates the target shell Tg1 with a heating laser light LS3 following the compression laser light LS1 are provided. The target shell Tg1 has a hollow spherical shell shape, includes an approximately spherical space Sp on an inner side thereof, includes at least one through hole H1 connecting an outer side thereof and the space Sp, and includes, on an outer surface Sf1 thereof, irradiation areas Ar1 and Ar2 to be irradiated with compression laser lights.
    Type: Application
    Filed: October 10, 2013
    Publication date: September 24, 2015
    Inventors: Takashi Sekine, Takashi Kurita, Toshiyuki Kawashima, Nakahiro Satoh, Hirofumi Kan, Yoneyoshi Kitagawa, Yoshitaka Mori, Katsuhiro Ishii, Kazuhisa Fujita, Ryohei Hanayama, Shinichiro Okihara, Atsushi Sunahara, Osamu Komeda, Naoki Nakamura, Yasuhiko Nishimura, Hirozumi Azuma
  • Publication number: 20150243492
    Abstract: An apparatus of forming silicon nitride film includes: a reaction chamber accommodating a workpiece; a source gas supply unit supplying a source gas into the reaction chamber; a nitriding gas supply unit supplying a nitriding gas into the reaction chamber; a controller configured to form the silicon nitride film on the workpiece by controlling the source gas supply unit such that the silicon is adsorbed to the workpiece by supplying the source gas into the reaction chamber, and controlling the nitriding gas supply unit such that the silicon adsorbed to the workpiece is nitrided by supplying the nitriding gas into the reaction chamber; a flow path where the nitriding gas supplied into the reaction chamber flows until reaching the workpiece; and members arranged in the flow path. The members have a coating with platinum-group metals that activates the nitriding gas supplied from the nitriding gas supply unit.
    Type: Application
    Filed: February 24, 2015
    Publication date: August 27, 2015
    Inventors: Tetsushi OZAKI, Yoshitaka MORI
  • Publication number: 20150084484
    Abstract: A linear driving device includes a slight rapid vibratory movements producing member coupled with one end of a driving shaft which causes said driving shaft to be moved in said an axial direction, a casing for supporting at least either said driving shaft or said slight rapid vibratory movements producing member so that said driving shaft can be moved in said axial direction; and a moving body to be coupled with said driving shaft so that said moving body can be moved in the axial direction. When said moving body moves from one end side toward the other end side of said driving shaft, a part of said moving body which forms the surface facing the other end side opposite to said one end of said moving body may hit against a component which stops said moving body from moving further toward the other end side of said driving shaft.
    Type: Application
    Filed: September 19, 2014
    Publication date: March 26, 2015
    Applicant: NEW SHICOH TECHNOLOGY CO., LTD.
    Inventors: Junichi TADA, Hiroki NARUSHIMA, Yoshitaka MORI
  • Publication number: 20150061462
    Abstract: The vibration producing device includes a driving shaft being placed under slight rapid vibratory movements in its axial direction, a slight rapid vibratory movements producing member coupled with one end of the driving shaft for causing the driving shaft to be vibrated with the slight rapid vibratory movements, a casing for supporting at least either the driving shaft or the slight rapid vibratory movement producing member in such a manner that the driving shaft can be vibrated with the slight rapid vibratory movements in its axial direction, and a weight member to be coupled with the driving shaft in order to permit the weight member to move in its axial direction under the slight rapid vibratory movements of the driving shaft, wherein the casing is vibrated by allowing the weight member to be moved forwards and backwards alternately along the driving shaft in its axial direction.
    Type: Application
    Filed: September 4, 2014
    Publication date: March 5, 2015
    Applicant: NEW SHICOH TECHNOLOGY CO., LTD.
    Inventors: Junichi TADA, Hiroki NARUSHIMA, Yoshitaka MORI
  • Patent number: 8760778
    Abstract: Disclosed is a rear-focus-type lens device in which a switch assembly including a plurality of switches can be provided in an attachment frame having, for example, a focus lens accommodated therein and which is capable of ensuring the strength of the attachment frame and the accuracy of the parts. A mounting frame provided on the rear side of a lens barrel body includes: an inner wall that partitions the inside of the mounting frame into a first space which accommodates an internal structure including, for example, a focus lens and a second space which accommodates a switch assembly including a plurality of switches for operating the lens device; and an opening of the second space which is formed in the side surface of the mounting frame and to which the switch assembly is attached. The strength of the mounting frame is ensured by the inner wall.
    Type: Grant
    Filed: September 9, 2010
    Date of Patent: June 24, 2014
    Assignee: FUJIFILM Corporation
    Inventor: Yoshitaka Mori
  • Patent number: 8753717
    Abstract: A film forming method for forming a thin film including boron, nitrogen, silicon, and carbon on a surface of a processing target by supplying a boron containing gas, a nitriding gas, a silane-based gas, and a hydrocarbon gas in a processing container in which the processing target is accommodated to be vacuum sucked includes: a first process which forms a BN film by performing a cycle of alternately and intermittently supplying the boron-containing gas and the nitriding gas once or more; and a second process which forms a SiCN film by performing a cycle of intermittently supplying the silane-based gas, the hydrocarbon gas, and the nitriding gas once or more. Accordingly, the thin film including boron, nitrogen, silicon, and carbon with a low-k dielectric constant, an improved wet-etching resistance, and a reduced leak current can be formed.
    Type: Grant
    Filed: June 15, 2012
    Date of Patent: June 17, 2014
    Assignee: Tokyo Electron Limited
    Inventors: Keisuke Suzuki, Kentaro Kadonaga, Yoshitaka Mori
  • Publication number: 20120321791
    Abstract: A film forming method for forming a thin film including boron, nitrogen, silicon, and carbon on a surface of a processing target by supplying a boron containing gas, a nitriding gas, a silane-based gas, and a hydrocarbon gas in a processing container in which the processing target is accommodated to be vacuum sucked includes: a first process which forms a BN film by performing a cycle of alternately and intermittently supplying the boron-containing gas and the nitriding gas once or more; and a second process which forms a SiCN film by performing a cycle of intermittently supplying the silane-based gas, the hydrocarbon gas, and the nitriding gas once or more. Accordingly, the thin film including boron, nitrogen, silicon, and carbon with a low-k dielectric constant, an improved wet-etching resistance, and a reduced leak current can be formed.
    Type: Application
    Filed: June 15, 2012
    Publication date: December 20, 2012
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Keisuke SUZUKI, Kentaro KADONAGA, Yoshitaka MORI
  • Publication number: 20120307950
    Abstract: An object is to be capable of inducing a nuclear fusion reaction at a relatively high efficiency and downsize a device. A nuclear fusion device 1 of the present invention includes a nuclear fusion target 7 including a target substrate 7a containing deuterium or tritium and a thin-film layer 7b containing deuterium or tritium stacked on the target substrate 7a, a vacuum container 5 for storing the nuclear fusion target 7, and a laser unit 3 for irradiating two successive first and second pulsed laser lights P1, P2 toward the thin-film layer 7b of the nuclear fusion target 7, and the intensity of the first pulsed laser light P1 is set to a value that is smaller than that of the second pulsed laser light P2 and allows peeling of the thin-film layer 7b from the target substrate 7a.
    Type: Application
    Filed: December 15, 2010
    Publication date: December 6, 2012
    Applicants: Toyota Jidosha Kabushiki Kaisha, Hamamatsu Photonics K.K.
    Inventors: Takashi Sekine, Toshiyuki Kawashima, Hirofumi Kan, Yoneyoshi Kitagawa, Yoshitaka Mori, Hirozumi Azuma, Tatsumi Hioki, Tomoyoshi Motohiro, Yasushi Miyamoto, Naoki Nakamura
  • Patent number: 8270105
    Abstract: Disclosed is a lens device including a click mechanism of a ring member that is rotated with respect to a lens barrel body, slides in the optical axis direction, has high slidability during a click operation and high durability, and can prevent one-sided abrasion due to the inclination of the ring member. A click mechanism of a first focus ring includes: elastic members for clicking provided at three equally divided positions on the circumference of a front fixed ring of a lens barrel body; and a contact portion that is formed in a central portion of the inner circumferential surface of the first focus ring and comes into contact with a convex portion of the elastic member for clicking. The elastic member for clicking is made of polyacetal with high slidability. Therefore, it is possible to reduce the abrasion of the elastic member for clicking during a click operation.
    Type: Grant
    Filed: August 20, 2010
    Date of Patent: September 18, 2012
    Assignee: Fujifilm Corporation
    Inventor: Yoshitaka Mori