Patents by Inventor Yoshito NISHIOKA

Yoshito NISHIOKA has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9564738
    Abstract: A semiconductor laser device includes an n-type clad layer, a first p-type clad layer and a ridge stripe. The device also includes an active layer interposed between the n-type clad layer and the first p-type clad layer, and a current-blocking layer formed on side surfaces of the ridge stripe. The ridge stripe of the device includes a second p-type clad layer formed into a ridge stripe shape on the opposite surface of the first p-type clad layer from the n-type clad layer. The ridge stripe is formed such that a first ridge width as the width of a surface of the second p-type clad layer exists on the same side as the first p-type clad layer and a second ridge width as the width of a surface of the second p-type clad layer exists on the opposite side from the first p-type clad layer.
    Type: Grant
    Filed: November 4, 2015
    Date of Patent: February 7, 2017
    Assignee: ROHM CO., LTD.
    Inventors: Yoshito Nishioka, Yoichi Mugino, Tsuguki Noma
  • Patent number: 9564739
    Abstract: A semiconductor laser device capable of high output is provided. A semiconductor laser diode includes: a substrate; and a semiconductor stacked structure, which is formed on the substrate through crystal growth. The semiconductor stacked structure includes: an n-type (Alx1Ga(1-x1))0.51In0.49P cladding layer and a p-type (Alx1Ga(1-x1))0.51In0.49P cladding layer; an n-side Alx2Ga(1-x2)As guiding layer and a p-side Alx2Ga(1-x2)As guiding layer, which are sandwiched between the cladding layers; and an active layer, which is sandwiched between the guiding layers. The active layer is formed of a quantum well layer including an AlyGa(1-y)As(1-x3)Px3 layer and a barrier layer including an Alx4Ga(1-x4)As layer that are alternatively repetitively stacked for a plurality of periods.
    Type: Grant
    Filed: February 19, 2016
    Date of Patent: February 7, 2017
    Assignee: ROHM CO., LTD
    Inventors: Tsuguki Noma, Minoru Akutsu, Yoshito Nishioka
  • Publication number: 20160211651
    Abstract: A semiconductor laser device capable of high output is provided. A semiconductor laser diode includes: a substrate; and a semiconductor stacked structure, which is formed on the substrate through crystal growth. The semiconductor stacked structure includes: an n-type (Alx1Ga(1-x1))0.51In0.49P cladding layer and a p-type (Alx1Ga(1-x1))0.51In0.49P cladding layer; an n-side Alx2Ga(1-x2)As guiding layer and a p-side Alx2Ga(1-x2)As guiding layer, which are sandwiched between the cladding layers; and an active layer, which is sandwiched between the guiding layers. The active layer is formed of a quantum well layer including an AlyGa(1-y)As(1-x3)Px3 layer and a barrier layer including an Alx4Ga(1-x4)As layer that are alternatively repetitively stacked for a plurality of periods.
    Type: Application
    Filed: February 19, 2016
    Publication date: July 21, 2016
    Applicant: ROHM CO., LTD.
    Inventors: Tsuguki NOMA, Minoru AKUTSU, Yoshito NISHIOKA
  • Patent number: 9356432
    Abstract: A semiconductor laser device capable of high output is provided. A semiconductor laser diode includes: a substrate; and a semiconductor stacked structure, which is formed on the substrate through crystal growth. The semiconductor stacked structure includes: an n-type (Alx1Ga1-x1))0.51In0.49P cladding layer and a p-type (Alx1Ga(1-x1))0.51In0.49P cladding layer; an n-side Alx2Ga(1-x2)As guiding layer and a p-side Alx2Ga(1-x2)As guiding layer, which are sandwiched between the cladding layers; and an active layer, which is sandwiched between the guiding layers. The active layer is formed of a quantum well layer including an AlyGa(1-y)As(1-x3)Px3 layer and a barrier layer including an Alx4Ga(1-x4)As layer that are alternatively repetitively stacked for a plurality of periods.
    Type: Grant
    Filed: February 21, 2014
    Date of Patent: May 31, 2016
    Assignee: ROHM CO., LTD.
    Inventors: Tsuguki Noma, Minoru Akutsu, Yoshito Nishioka
  • Publication number: 20160064902
    Abstract: A semiconductor laser device includes an n-type clad layer, a first p-type clad layer and a ridge stripe. The device also includes an active layer interposed between the n-type clad layer and the first p-type clad layer, and a current-blocking layer formed on side surfaces of the ridge stripe. The ridge stripe of the device includes a second p-type clad layer formed into a ridge stripe shape on the opposite surface of the first p-type clad layer from the n-type clad layer. The ridge stripe is formed such that a first ridge width as the width of a surface of the second p-type clad layer exists on the same side as the first p-type clad layer and a second ridge width as the width of a surface of the second p-type clad layer exists on the opposite side from the first p-type clad layer.
    Type: Application
    Filed: November 4, 2015
    Publication date: March 3, 2016
    Applicant: ROHM CO., LTD.
    Inventors: Yoshito NISHIOKA, Yoichi MUGINO, Tsuguki NOMA
  • Patent number: 9197035
    Abstract: A semiconductor laser device includes an n-type clad layer, a first p-type clad layer and a ridge stripe. The device also includes an active layer interposed between the n-type clad layer and the first p-type clad layer, and a current-blocking layer formed on side surfaces of the ridge stripe. The ridge stripe of the device includes a second p-type clad layer formed into a ridge stripe shape on the opposite surface of the first p-type clad layer from the n-type clad layer. The ridge stripe is formed such that a first ridge width as the width of a surface of the second p-type clad layer exists on the same side as the first p-type clad layer and a second ridge width as the width of a surface of the second p-type clad layer exists on the opposite side from the first p-type clad layer.
    Type: Grant
    Filed: December 3, 2014
    Date of Patent: November 24, 2015
    Assignee: ROHM CO., LTD.
    Inventors: Yoshito Nishioka, Yoichi Mugino, Tsuguki Noma
  • Publication number: 20150085890
    Abstract: A semiconductor laser device includes an n-type clad layer, a first p-type clad layer and a ridge stripe. The device also includes an active layer interposed between the n-type clad layer and the first p-type clad layer, and a current-blocking layer formed on side surfaces of the ridge stripe. The ridge stripe of the device includes a second p-type clad layer formed into a ridge stripe shape on the opposite surface of the first p-type clad layer from the n-type clad layer. The ridge stripe is formed such that a first ridge width as the width of a surface of the second p-type clad layer exists on the same side as the first p-type clad layer and a second ridge width as the width of a surface of the second p-type clad layer exists on the opposite side from the first p-type clad layer.
    Type: Application
    Filed: December 3, 2014
    Publication date: March 26, 2015
    Applicant: ROHM CO., LTD.
    Inventors: Yoshito NISHIOKA, Yoichi MUGINO, Tsuguki NOMA
  • Patent number: 8957692
    Abstract: Provided is a method for performing a burn-in test on an object under test in which a plurality of electrodes are provided in positions at different heights. The method comprising steps of: preparing an object under test in which an electrode in a higher position have a higher surface roughness among the plurality of electrodes; bringing a plurality of sheet-type probes into contact with the plurality of electrodes, respectively; and supplying an electric current with the plurality of electrodes through the plurality of sheet-type probes. By implementing the method, the sheet-type probes can be kept in stable contact with the electrodes because electrodes in a higher position have a higher surface roughness Ra than electrodes in a lower position. Consequently, stable and reliable burn-in test can be performed.
    Type: Grant
    Filed: December 2, 2010
    Date of Patent: February 17, 2015
    Assignees: TDK Corporation, Rohm Co., Ltd.
    Inventors: Koji Shimazawa, Masaaki Kaneko, Takashi Honda, Yoichi Mugino, Yoshito Nishioka, Tsuguki Noma
  • Patent number: 8923355
    Abstract: A semiconductor laser device includes an n-type clad layer, a first p-type clad layer and a ridge stripe. The device also includes an active layer interposed between the n-type clad layer and the first p-type clad layer, and a current-blocking layer formed on side surfaces of the ridge stripe. The ridge stripe of the device includes a second p-type clad layer formed into a ridge stripe shape on the opposite surface of the first p-type clad layer from the n-type clad layer. The ridge stripe is formed such that a first ridge width as the width of a surface of the second p-type clad layer exists on the same side as the first p-type clad layer and a second ridge width as the width of a surface of the second p-type clad layer exists on the opposite side from the first p-type clad layer.
    Type: Grant
    Filed: December 16, 2013
    Date of Patent: December 30, 2014
    Assignee: Rohm Co., Ltd.
    Inventors: Yoshito Nishioka, Yoichi Mugino, Tsuguki Noma
  • Publication number: 20140169396
    Abstract: A semiconductor laser device capable of high output is provided. A semiconductor laser diode includes: a substrate; and a semiconductor stacked structure, which is formed on the substrate through crystal growth. The semiconductor stacked structure includes: an n-type (Alx1Ga1-x1))0.51In0.49P cladding layer and a p-type (Alx1Ga(1-x1))0.51In0.49P cladding layer; an n-side Alx2Ga(1-x2)As guiding layer and a p-side Alx2Ga(1-x2)As guiding layer, which are sandwiched between the cladding layers; and an active layer, which is sandwiched between the guiding layers. The active layer is formed of a quantum to well layer including an AlyGa(1-y)As(1-x3)Px3 layer and a barrier layer including an Alx4Ga(1-x4)As layer that are alternatively repetitively stacked for a plurality of periods.
    Type: Application
    Filed: February 21, 2014
    Publication date: June 19, 2014
    Applicant: ROHM CO., LTD.
    Inventors: Tsuguki NOMA, Minoru Akutsu, Yoshito Nishioka
  • Publication number: 20140105236
    Abstract: A semiconductor laser device includes an n-type clad layer, a first p-type clad layer and a ridge stripe. The device also includes an active layer interposed between the n-type clad layer and the first p-type clad layer, and a current-blocking layer formed on side surfaces of the ridge stripe. The ridge stripe of the device includes a second p-type clad layer formed into a ridge stripe shape on the opposite surface of the first p-type clad layer from the n-type clad layer. The ridge stripe is formed such that a first ridge width as the width of a surface of the second p-type clad layer exists on the same side as the first p-type clad layer and a second ridge width as the width of a surface of the second p-type clad layer exists on the opposite side from the first p-type clad layer.
    Type: Application
    Filed: December 16, 2013
    Publication date: April 17, 2014
    Applicant: ROHM CO., LTD.
    Inventors: Yoshito NISHIOKA, Yoichi MUGINO, Tsuguki NOMA
  • Patent number: 8699536
    Abstract: A semiconductor laser device capable of high output is provided. A semiconductor laser diode includes: a substrate; and a semiconductor stacked structure, which is formed on the substrate through crystal growth. The semiconductor stacked structure includes: an n-type (Alx1Ga(1-x1))0.51In0.49P cladding layer and a p-type (Alx1Ga(1-x1))0.51In0.49P cladding layer; an n-side Alx2Ga(1-x2)As guiding layer and a p-side Alx2Ga(1-x2)As guiding layer, which are sandwiched between the cladding layers; and an active layer, which is sandwiched between the guiding layers. The active layer is formed of a quantum well layer including an AlyGa(1-y)As(1-x3)Px3 layer and a barrier layer including an Alx4Ga(1-x4)As layer that are alternatively repetitively stacked for a plurality of periods.
    Type: Grant
    Filed: December 12, 2011
    Date of Patent: April 15, 2014
    Assignee: Rohm Co., Ltd.
    Inventors: Tsuguki Noma, Minoru Akutsu, Yoshito Nishioka
  • Patent number: 8611386
    Abstract: A semiconductor laser device includes an n-type clad layer, a first p-type clad layer and a ridge stripe. The device also includes an active layer interposed between the n-type clad layer and the first p-type clad layer, and a current-blocking layer formed on side surfaces of the ridge stripe. The ridge stripe of the device includes a second p-type clad layer formed into a ridge stripe shape on the opposite surface of the first p-type clad layer from the n-type clad layer. The ridge stripe is formed such that a first ridge width as the width of a surface of the second p-type clad layer exists on the same side as the first p-type clad layer and a second ridge width as the width of a surface of the second p-type clad layer exists on the opposite side from the first p-type clad layer.
    Type: Grant
    Filed: January 26, 2012
    Date of Patent: December 17, 2013
    Assignee: Rohm Co., Ltd.
    Inventors: Yoshito Nishioka, Yoichi Mugino, Tsuguki Noma
  • Patent number: 8446927
    Abstract: A semiconductor laser device includes a p-type clad layer and an n-type clad layer, a p-side guide layer and an n-side guide layer interposed between the p-type clad layer and the n-type clad layer, and an active layer interposed between the p-side guide layer and the n-side guide layer. The active layer includes at least two quantum well layers and a barrier layer interposed between the quantum well layers adjoining to each other. Each of the p-type clad layer and the n-type clad layer is formed of a (Alx1Ga(1-x1))0.51In0.49P layer (0?x1?1). Each of the p-side guide layer, the n-side guide layer and the barrier layer is formed of a Alx2Ga(1-x2)As layer (0?x2?1). Each of the quantum well layers is formed of a GaAs(1-x3)Px3 layer (0?x3?1). The (Alx1Ga(1-x1))0.51In0.49P layer has a composition satisfying an inequality, x1>0.7. The Alx2Ga(1-x2)As layer has a composition satisfying an inequality, 0.4?x2?0.8.
    Type: Grant
    Filed: January 26, 2012
    Date of Patent: May 21, 2013
    Assignee: Rohm Co., Ltd.
    Inventors: Yoshito Nishioka, Yoichi Mugino, Tsuguki Noma
  • Publication number: 20120307856
    Abstract: A semiconductor laser device includes a p-type clad layer and an n-type clad layer, a p-side guide layer and an n-side guide layer interposed between the p-type clad layer and the n-type clad layer, and an active layer interposed between the p-side guide layer and the n-side guide layer. The active layer includes at least two quantum well layers and a barrier layer interposed between the quantum well layers adjoining to each other. Each of the p-type clad layer and the n-type clad layer is formed of a (Alx1Ga(1-x1))0.51In0.49P layer (0?x1?1). Each of the p-side guide layer, the n-side guide layer and the barrier layer is formed of a Alx2Ga(1-x2)As layer (0?x2?1). Each of the quantum well layers is formed of a GaAs(1-x3)Px3 layer (0?x3?1). The (Alx1Ga(1-x1))0.51In0.49P layer has a composition satisfying an inequality, x1>0.7. The Alx2Ga(1-x2)As layer has a composition satisfying an inequality, 0.4?x2?0.8.
    Type: Application
    Filed: July 27, 2012
    Publication date: December 6, 2012
    Applicant: ROHM CO., LTD.
    Inventors: Yoshito NISHIOKA, Yoichi Mugino, Tsuguki Noma
  • Publication number: 20120195338
    Abstract: A semiconductor laser device includes a p-type clad layer and an n-type clad layer, a p-side guide layer and an n-side guide layer interposed between the p-type clad layer and the n-type clad layer, and an active layer interposed between the p-side guide layer and the n-side guide layer. The active layer includes at least two quantum well layers and a barrier layer interposed between the quantum well layers adjoining to each other. Each of the p-type clad layer and the n-type clad layer is formed of a (Alx1Ga(1-x1))0.51In0.49P layer (0?x1?1). Each of the p-side guide layer, the n-side guide layer and the barrier layer is formed of a Alx2Ga(1-x2)As layer (0?x2?1). Each of the quantum well layers is formed of a GaAs(1-x3)Px3 layer (0?x3?1). The (Alx1Ga(1-x1))0.51In0.49P layer has a composition satisfying an inequality, x1>0.7. The Alx2Ga(1-x2)As layer has a composition satisfying an inequality, 0.4?x2?0.8.
    Type: Application
    Filed: January 26, 2012
    Publication date: August 2, 2012
    Applicant: ROHM CO., LTD.
    Inventors: Yoshito NISHIOKA, Yoichi MUGINO, Tsuguki NOMA
  • Publication number: 20120195339
    Abstract: A semiconductor laser device includes an n-type clad layer, a first p-type clad layer and a ridge stripe. The device also includes an active layer interposed between the n-type clad layer and the first p-type clad layer, and a current-blocking layer formed on side surfaces of the ridge stripe. The ridge stripe of the device includes a second p-type clad layer formed into a ridge stripe shape on the opposite surface of the first p-type clad layer from the n-type clad layer. The ridge stripe is formed such that a first ridge width as the width of a surface of the second p-type clad layer exists on the same side as the first p-type clad layer and a second ridge width as the width of a surface of the second p-type clad layer exists on the opposite side from the first p-type clad layer.
    Type: Application
    Filed: January 26, 2012
    Publication date: August 2, 2012
    Applicant: ROHM CO., LTD.
    Inventors: Yoshito NISHIOKA, Yoichi MUGINO, Tsuguki NOMA
  • Publication number: 20120147916
    Abstract: A semiconductor laser device capable of high output is provided. A semiconductor laser diode includes: a substrate; and a semiconductor stacked structure, which is formed on the substrate through crystal growth. The semiconductor stacked structure includes: an n-type (Alx1Ga(1-x1))0.51In0.49P cladding layer 14 and a p-type (Alx1Ga(1-x1))0.51In0.49P cladding layer; an n-side Alx2Ga(1-x2)As guiding layer and a p-side Alx2Ga(1-x2)As guiding layer, which are sandwiched between the cladding layers; and an active layer, which is sandwiched between the guiding layers. The active layer is formed of a quantum well layer including an AlyGa(1-y)As(1-x3)Px3 layer and a barrier layer including an Alx4Ga(1-x4)As layer that are alternatively repetitively stacked for a plurality of periods.
    Type: Application
    Filed: December 12, 2011
    Publication date: June 14, 2012
    Applicant: ROHM CO., LTD.
    Inventors: Tsuguki Noma, Minoru Akutsu, Yoshito Nishioka
  • Publication number: 20120139566
    Abstract: Provided is a method for performing a burn-in test on an object under test in which a plurality of electrodes are provided in positions at different heights. The method comprising steps of: preparing an object under test in which an electrode in a higher position have a higher surface roughness among the plurality of electrodes; bringing a plurality of sheet-type probes into contact with the plurality of electrodes, respectively; and supplying an electric current with the plurality of electrodes through the plurality of sheet-type probes. By implementing the method, the sheet-type probes can be kept in stable contact with the electrodes because electrodes in a higher position have a higher surface roughness Ra than electrodes in a lower position. Consequently, stable and reliable burn-in test can be performed.
    Type: Application
    Filed: December 2, 2010
    Publication date: June 7, 2012
    Applicants: ROHM CO., LTD., TDK CORPORATION
    Inventors: Koji SHIMAZAWA, Masaaki KANEKO, Takashi HONDA, Yoichi MUGINO, Yoshito NISHIOKA, Tsuguki NOMA