Patents by Inventor Yoshiya Kimura

Yoshiya Kimura has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8889570
    Abstract: Disclosed is a light-transmitting electromagnetic-shielding laminate, which is characterized in that two or more layers including an electromagnetic-shielding layer are arranged in layers using a (meth)acrylate adhesive composition which contains a (meth)acrylate monomer, a (meth)acrylate oligomer and at least one member selected from the group consisting of acrylic amide derivatives, silane compounds and organophosphorus compounds. Also disclosed is a light-transmitting radio wave absorber which is characterized in that a resistive layer, a dielectric spacer and a reflective layer are arranged in layers using a (meth)acrylate adhesive composition which contains a (meth)acrylate monomer, a (meth)acrylate oligomer and at least one member selected from the group consisting of acrylic amide derivatives, silane compounds and organophosphorus compounds.
    Type: Grant
    Filed: March 11, 2008
    Date of Patent: November 18, 2014
    Assignee: Mitsubishi Gas Chemical Company, Inc
    Inventors: Takatoshi Matsumura, Noboru Ohtani, Yoshiyuki Masuda, Masahiko Ishikawa, Yoshiya Kimura, Kyoko Nishizaki, Yoshitaka Masuda
  • Patent number: 8815373
    Abstract: The present invention provides a method for manufacturing a laminate, comprising the steps of laminating two or more layers of polycarbonate resin film and/or sheet using a (meth)acrylate-based adhesive composition containing a (A) (meth)acrylate monomer, a (B) meth(acrylate) olygomer, an (C) acrylamide derivative, and a (D) silane compound and/or an (E) organophosphorus compound to form a laminate having a thickness of 0.1 mm to 30 mm; heating the laminate at 130° C. to 185° C. so that a temperature difference between a top surface and a bottom surface of the laminate is within 20° C.; and bending the post-heating laminate into a curved shape having a radius of curvature of 10 mm or greater.
    Type: Grant
    Filed: October 16, 2013
    Date of Patent: August 26, 2014
    Assignees: Mitsubishi Gas Chemical Company, Inc., MGC Filsheet Co., Ltd.
    Inventors: Takatoshi Matsumura, Yoshiya Kimura
  • Publication number: 20140044927
    Abstract: The present invention provides a method for manufacturing a laminate, comprising the steps of laminating two or more layers of polycarbonate resin film and/or sheet using a (meth)acrylate-based adhesive composition containing a (A) (meth)acrylate monomer, a (B) meth(acrylate) olygomer, an (C) acrylamide derivative, and a (D) silane compound and/or an (E) organophosphorus compound to form a laminate having a thickness of 0.1 mm to 30 mm; heating the laminate at 130° C. to 185° C. so that a temperature difference between a top surface and a bottom surface of the laminate is within 20° C.; and bending the post-heating laminate into a curved shape having a radius of curvature of 10 mm or greater.
    Type: Application
    Filed: October 16, 2013
    Publication date: February 13, 2014
    Applicants: MGC FILSHEET CO., LTD., MITSUBISHI GAS CHEMICAL COMPANY, INC.
    Inventors: Takatoshi Matsumura, Yoshiya Kimura
  • Patent number: 8585860
    Abstract: The present invention provides a method for manufacturing a laminate, comprising the steps of laminating two or more layers of polycarbonate resin film and/or sheet using a (meth)acrylate-based adhesive composition containing a (A) (meth)acrylate monomer, a (B) meth(acrylate) olygomer, an (C) acrylamide derivative, and a (D) silane compound and/or an (E) organophosphorus compound to form a laminate having a thickness of 0.1 mm to 30 mm; heating the laminate at 130° C. to 185° C. so that a temperature difference between a top surface and a bottom surface of the laminate is within 20° C.; and bending the post-heating laminate into a curved shape having a radius of curvature of 10 mm or greater.
    Type: Grant
    Filed: May 7, 2009
    Date of Patent: November 19, 2013
    Assignees: Mitsubishi Gas Chemical Company, Inc., MGC Filsheet Co., Ltd.
    Inventors: Takatoshi Matsumura, Yoshiya Kimura
  • Patent number: 8063391
    Abstract: The present invention provides a light-transmitting electromagnetic wave-shielding material for use in displays or in-vehicle panels each having a polarizing plate or a retardation plate, wherein the light-transmitting electromagnetic wave-shielding material undergoes no generation of light interference fringes and is satisfactory in visibility even through sunglasses, goggles, glare-proof panels or glare-proof window materials having polarizing capability. By using unstretched light-transmitting organic polymer materials low in molecular orientation or small in molecular orientation unevenness as the base substrate of an electromagnetic wave-shielding layer, the light-transmitting electromagnetic wave-shielding material excellent in light interference fringe prevention capability can be obtained.
    Type: Grant
    Filed: June 3, 2008
    Date of Patent: November 22, 2011
    Assignee: Mitsubishi Gas Chemical Company, Inc.
    Inventors: Takatoshi Matsumura, Masahiko Ishikawa, Yoshitaka Masuda, Noboru Ohtani, Yoshiya Kimura, Yoshiyuki Masuda, Noriyuki Kato
  • Publication number: 20110070448
    Abstract: The present invention provides a method for manufacturing a laminate, comprising the steps of laminating two or more layers of polycarbonate resin film and/or sheet using a (meth)acrylate-based adhesive composition containing a (A) (meth)acrylate monomer, a (B) meth(acrylate) olygomer, an (C) acrylamide derivative, and a (D) silane compound and/or an (E) organophosphorus compound to form a laminate having a thickness of 0.1 mm to 30 mm; heating the laminate at 130° C. to 185° C. so that a temperature difference between a top surface and a bottom surface of the laminate is within 20° C.; and bending the post-heating laminate into a curved shape having a radius of curvature of 10 mm or greater.
    Type: Application
    Filed: May 7, 2009
    Publication date: March 24, 2011
    Inventors: Takatoshi Matsumura, Yoshiya Kimura
  • Patent number: 7892404
    Abstract: The present invention provides a method of oxidizing a substance in a liquid containing nitrous oxide (N2O) and an oxidation apparatus therefor. In this method, oxidation of a substance is conducted by allowing a substance to be present in a solution containing nitrous oxide (N2O) and irradiating the solution with light including a wavelength of at least 240 nm or less.
    Type: Grant
    Filed: May 18, 2005
    Date of Patent: February 22, 2011
    Assignee: Mitsubishi Gas Chemical Company, Inc.
    Inventors: Ryuji Sotoaka, Yoshiya Kimura
  • Publication number: 20100147578
    Abstract: Disclosed is a light-transmitting electromagnetic-shielding laminate, which is characterized in that two or more layers including an electromagnetic-shielding layer are arranged in layers using a (meth)acrylate adhesive composition which contains a (meth)acrylate monomer, a (meth)acrylate oligomer and at least one member selected from the group consisting of acrylic amide derivatives, silane compounds and organophosphorus compounds. Also disclosed is a light-transmitting radio wave absorber which is characterized in that a resistive layer, a dielectric spacer and a reflective layer are arranged in layers using a (meth)acrylate adhesive composition which contains a (meth)acrylate monomer, a (meth)acrylate oligomer and at least one member selected from the group consisting of acrylic amide derivatives, silane compounds and organophosphorus compounds.
    Type: Application
    Filed: March 11, 2008
    Publication date: June 17, 2010
    Inventors: Takatoshi Matsumura, Noboru Ohtani, Yoshiyuki Masuda, Masahiko Ishikawa, Yoshiya Kimura, Kyoko Nishizaki, Yoshitaka Masuda
  • Publication number: 20080302981
    Abstract: The present invention provides a light-transmitting electromagnetic wave-shielding material for use in displays or in-vehicle panels each having a polarizing plate or a retardation plate, wherein the light-transmitting electromagnetic wave-shielding material undergoes no generation of light interference fringes and is satisfactory in visibility even through sunglasses, goggles, glare-proof panels or glare-proof window materials having polarizing capability. By using unstretched light-transmitting organic polymer materials low in molecular orientation or small in molecular orientation unevenness as the base substrate of an electromagnetic wave-shielding layer, the light-transmitting electromagnetic wave-shielding material excellent in light interference fringe prevention capability can be obtained.
    Type: Application
    Filed: June 3, 2008
    Publication date: December 11, 2008
    Inventors: Takatoshi Matsumura, Masahiko Ishikawa, Yoshitaka Masuda, Noboru Ohtani, Yoshiya Kimura, Yoshiyuki Masuda, Noriyuki Kato
  • Publication number: 20080047577
    Abstract: A substrate cleaning device includes a rotating table that rotatably holds a silicon substrate. A light irradiation device is capable of irradiating at least a portion of a surface of the held silicon substrate with light. A nozzle is capable of selectively supplying at least N2O water and a hydrofluoric acid solution onto the substrate. A control unit controls the supply of the light irradiation device and the nozzle and enables light irradiation by the light irradiation device when the N2O water is supplied onto the silicon substrate.
    Type: Application
    Filed: September 4, 2007
    Publication date: February 28, 2008
    Inventors: Hideto Goto, Kenji Furusawa, Satoshi Joya, Ryuji Sotoaka, Keiichi Tanaka, Yoshiya Kimura, Tomoyuki Azuma
  • Publication number: 20070215454
    Abstract: The present invention provides a method of oxidizing a substance in a liquid containing nitrous oxide (N2O) and an oxidation apparatus therefor. In this method, oxidation of a substance is conducted by allowing a substance to be present in a solution containing nitrous oxide (N2O) and irradiating the solution with light including a wavelength of at least 240 nm or less.
    Type: Application
    Filed: May 18, 2005
    Publication date: September 20, 2007
    Applicant: MITSUBISHI GAS CHEMICAL COMPANY, INC.
    Inventors: Ryuji Sotoaka, Yoshiya Kimura
  • Patent number: 6875288
    Abstract: The cleaning agent described above comprises a surfactant and an organic solvent, and the cleaning method described above is characterized by allowing the cleaning agent described above to flow on the surface of the material to be treated at a high speed to thereby clean the above surface. According to the present invention, deposits adhering firmly to a surface of a material to be treated can readily be removed without damaging the material to be treated.
    Type: Grant
    Filed: October 9, 2001
    Date of Patent: April 5, 2005
    Assignees: Tokyo Electron Limited, Mitsubishi Gas Chemical Company, Inc.
    Inventors: Hideto Gotoh, Takayuki Niuya, Hiroyuki Mori, Hiroshi Matsunaga, Fukusaburo Ishihara, Yoshiya Kimura, Ryuji Sotoaka, Takuya Goto, Tetsuo Aoyama, Kojiro Abe
  • Publication number: 20040224866
    Abstract: (1) A cleaning solution for semiconductor substrates comprising an oxidizing agent, an acid and a fluorine compound, having a pH adjusted in the range of 3 to 10 by addition of a basic compound and having a concentration of water of 80% by weight or greater, (2) a cleaning solution for semiconductor substrates comprising an oxidizing agent, an acid, a fluorine compound and a corrosion inhibitor, having a pH adjusted in the range of 3 to 10 by addition of a basic compound and having a concentration of water of 80% by weight or greater, and a process for cleaning semiconductor substrates having metal wiring which comprises cleaning with the cleaning solution, are provided. The cleaning solution can completely remove residues of etching on semiconductor substrates in a short time, does not corrode copper wiring materials and insulation film materials, is safe and exhibits little adverse effects on the environment.
    Type: Application
    Filed: February 13, 2004
    Publication date: November 11, 2004
    Inventors: Hiroshi Matsunaga, Masaru Ohto, Kenji Yamada, Hidetaka Shimizu, Ken Tsugane, Seiki Oguni, Yoshiya Kimura
  • Patent number: 6514352
    Abstract: The cleaning method described above is characterized by allowing a cleaning agent comprising an oxidizing agent, a chelating agent and fluorine compound to flow on a surface of a material to be treated at a high speed to thereby clean the above surface according to the present invention, deposits adhering firmly to a surface of a material to be treated can readily be removed without damaging the material to be treated.
    Type: Grant
    Filed: October 9, 2001
    Date of Patent: February 4, 2003
    Assignees: Tokyo Electron Limited, Mitsubishi Gas Chemical Company Inc.
    Inventors: Hideto Gotoh, Takayuki Niuya, Hiroyuki Mori, Hiroshi Matsunaga, Fukusaburo Ishihara, Yoshiya Kimura, Ryuji Sotoaka, Takuya Goto, Tetsuo Aoyama, Kojiro Abe
  • Publication number: 20020066465
    Abstract: The cleaning method described above is characterized by allowing a cleaning agent comprising an oxidizing agent, a chelating agent and a fluorine compound to flow on a surface of a material to be treated at a bigh speed to thereby clean the above surface. according to the present invention, deposits adhering firmly to a surface of a material to be treated can readily be removed without damaging the material to be treated.
    Type: Application
    Filed: October 9, 2001
    Publication date: June 6, 2002
    Inventors: Hideto Gotoh, Takayuki Niuya, Hiroyuki Mori, Hiroshi Matsunaga, Fukusaburo Ishihara, Yoshiya Kimura, Ryuji Sotoaka, Takuya Goto, Tetsuo Aoyama, Kojiro Abe
  • Publication number: 20020064963
    Abstract: The cleaning agent described above comprises a surfactant and an organic solvent, and the cleaning method described above is characterized by allowing the cleaning agent described above to flow on the surface of the material to be treated at a high speed to thereby clean the above surface. According to the present invention, deposits adhering firmly to a surface of a material to be treated can readily be removed without damaging the material to be treated.
    Type: Application
    Filed: October 9, 2001
    Publication date: May 30, 2002
    Inventors: Hideto Gotoh, Takayuki Niuya, Hiroyuki Mori, Hiroshi Matsunaga, Fukusaburo Ishihara, Yoshiya Kimura, Ryuji Sotoaka, Takuya Goto, Tetsuo Aoyama, Kojiro Abe