Patents by Inventor Yoshiyuki Uehane

Yoshiyuki Uehane has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11053894
    Abstract: A multi-cylinder engine includes an engine body having first and second cylinder groups, first and second exhaust passage groups each having a plurality of independent exhaust passage parts and a collective exhaust passage part, and an exhaust gas recirculation (EGR) passage. In a plan view in cylinder axis directions, the passage groups are disposed adjacent to each other, and, in the first exhaust passage group, a first independent exhaust part of the plurality of independent exhaust passage parts is connected to the EGR passage and a second independent exhaust passage part is connected to the collective exhaust passage part so as to be directed to a connection of the first independent exhaust passage part to the collective exhaust passage part, and in the second exhaust passage group, an opening of the collective exhaust passage part is offset toward the first exhaust passage group in a lineup direction.
    Type: Grant
    Filed: January 15, 2019
    Date of Patent: July 6, 2021
    Assignee: Mazda Motor Corporation
    Inventors: Yoshiyuki Uehane, Daijirou Ishimoto, Atsuhiro Hatabu
  • Patent number: 10774794
    Abstract: A multi-cylinder engine having an engine body with a cylinder head is provided. The engine includes first and second cylinder groups, each having a plurality of independent exhaust passage parts provided to the cylinder head and connected to cylinders of the first and second cylinder groups, respectively, and first and second collective exhaust passage parts collecting the first and second pluralities of independent exhaust passage parts at a location downstream in an exhaust gas flow direction, and having an opening formed in the side surface part of the cylinder head, first and second exhaust-pipe parts each connected to the openings of the first and second collective exhaust passage parts, respectively, an exhaust gas recirculation (EGR) passage connected at one end to the first exhaust passage group and connected at the other end to an intake passage, and an exhaust gas temperature sensor provided to the first exhaust-pipe part.
    Type: Grant
    Filed: January 17, 2019
    Date of Patent: September 15, 2020
    Assignee: Mazda Motor Corporation
    Inventors: Yoshiyuki Uehane, Atsuhiro Hatabu, Kenta Kobayashi
  • Patent number: 10760477
    Abstract: A turbocharger engine includes a dual stage turbocharger in which a first turbo unit is disposed on the upstream side of a second turbo unit on an exhaust passage. The turbocharger is disposed in such a manner that a second turbine shaft of the second turbo unit is far from an engine output shaft than a first turbine shaft of the first turbo unit in a plan view in an axis direction of a cylinder. Further, a second turbine is rotated clockwise around an axis thereof in a side view when the turbocharger is viewed from the side of the turbine, and an intra-turbine passage is disposed on the side of an engine body than the second turbine shaft.
    Type: Grant
    Filed: May 31, 2017
    Date of Patent: September 1, 2020
    Assignee: MAZDA MOTOR CORPORATION
    Inventors: Yasushi Niwa, Yoshiyuki Uehane, Keiji Araki
  • Patent number: 10697358
    Abstract: An intake passage structure for a turbocharger-equipped engine (1) includes a supercharging passage (71) and an air relief passage (72) that are provided in a compressor case (72a). The air relief passage (72) has a first passage (73) and a second passage (74), each of which is in a non-linear shape. The first and second passages (73) and (74) each have an air outflow port (73a, 74a) formed through an inner wall surface of an upstream portion (71a) of the supercharging passage (71) upstream of a compressor (21). The air outflow ports (73a, 74a) are formed through different portions of the inner wall surface in a circumferential direction of the inner wall surface so as to overlap with each other in a direction along a central axis of the upstream portion (71a).
    Type: Grant
    Filed: October 11, 2016
    Date of Patent: June 30, 2020
    Assignee: MAZDA MOTOR CORPORATION
    Inventors: Yoshiyuki Uehane, Ken Ohtsuki, Einosuke Suekuni, Kimio Ishida, Hiroshi Hosokawa, Junji Watanabe
  • Publication number: 20200040855
    Abstract: An intake passage structure for a turbocharger-equipped engine (1) includes a supercharging passage (71) and an air relief passage (72) provided in a compressor case (21a). The air relief passage (72) has an air outflow port (72a) formed through an inner wall surface of an upstream portion (71a) of the supercharging passage (71) upstream of the compressor (21). A projecting member (91) projecting radially inward of a specific portion (90) is provided on a portion of an inner wall surface of the specific portion (90) in a circumferential direction of the inner wall surface. The specific portion (90) ranges from a downstream portion of an upstream intake passage (32) to a portion of the supercharging passage (71) upstream of the air outflow port (72a).
    Type: Application
    Filed: October 11, 2016
    Publication date: February 6, 2020
    Applicant: MAZDA MOTOR CORPORATION
    Inventors: Yoshiyuki UEHANE, Ken OHTSUKI, Einosuke SUEKUNI, Kimio ISHIDA, Hiroshi HOSOKAWA, Junji WATANABE
  • Publication number: 20200040810
    Abstract: An intake passage structure for a turbocharger-equipped engine (1) includes a supercharging passage (71) and an air relief passage (72) that are provided in a compressor case (72a). The air relief passage (72) has a first passage (73) and a second passage (74), each of which is in a non-linear shape. The first and second passages (73) and (74) each have an air outflow port (73a, 74a) formed through an inner wall surface of an upstream portion (71a) of the supercharging passage (71) upstream of a compressor (21). The air outflow ports (73a, 74a) are formed through different portions of the inner wall surface in a circumferential direction of the inner wall surface so as to overlap with each other in a direction along a central axis of the upstream portion (71a).
    Type: Application
    Filed: October 11, 2016
    Publication date: February 6, 2020
    Applicant: MAZDA MOTOR CORPORATION
    Inventors: Yoshiyuki UEHANE, Ken OHTSUKI, Einosuke SUEKUNI, Kimio ISHIDA, Hiroshi HOSOKAWA, Junji WATANABE
  • Publication number: 20190226427
    Abstract: A multi-cylinder engine includes an engine body having first and second cylinder groups, first and second exhaust passage groups each having a plurality of independent exhaust passage parts and a collective exhaust passage part, and an exhaust gas recirculation (EGR) passage. In a plan view in cylinder axis directions, the passage groups are disposed adjacent to each other, and, in the first exhaust passage group, a first independent exhaust part of the plurality of independent exhaust passage parts is connected to the EGR passage and a second independent exhaust passage part is connected to the collective exhaust passage part so as to be directed to a connection of the first independent exhaust passage part to the collective exhaust passage part, and in the second exhaust passage group, an opening of the collective exhaust passage part is offset toward the first exhaust passage group in a lineup direction.
    Type: Application
    Filed: January 15, 2019
    Publication date: July 25, 2019
    Inventors: Yoshiyuki Uehane, Daijirou Ishimoto, Atsuhiro Hatabu
  • Publication number: 20190226428
    Abstract: A multi-cylinder engine having an engine body with a cylinder head is provided. The engine includes first and second cylinder groups, each having a plurality of independent exhaust passage parts provided to the cylinder head and connected to cylinders of the first and second cylinder groups, respectively, and first and second collective exhaust passage parts collecting the first and second pluralities of independent exhaust passage parts at a location downstream in an exhaust gas flow direction, and having an opening formed in the side surface part of the cylinder head, first and second exhaust-pipe parts each connected to the openings of the first and second collective exhaust passage parts, respectively, an exhaust gas recirculation (EGR) passage connected at one end to the first exhaust passage group and connected at the other end to an intake passage, and an exhaust gas temperature sensor provided to the first exhaust-pipe part.
    Type: Application
    Filed: January 17, 2019
    Publication date: July 25, 2019
    Inventors: Yoshiyuki Uehane, Atsuhiro Hatabu, Kenta Kobayashi
  • Patent number: 10260404
    Abstract: Disclosed herein is a technique for providing an engine supercharger of a reduced size allowing an exhaust gas to be introduced smoothly into a turbine scroll. A turbine for use in this supercharger includes: a turbine lead-in route, into which the exhaust gas is introduced; a turbine scroll formed continuously with the turbine lead-in route to allow the exhaust gas to swirl around inside; a turbine wheel to turn on an axis of rotation; a turbine lead-out route; a wastegate passage to bypass the exhaust gas around the turbine scroll; and a wastegate valve. The turbine lead-in route includes a throat portion having a tapered downstream portion. The wastegate passage branches from that throat portion.
    Type: Grant
    Filed: February 2, 2017
    Date of Patent: April 16, 2019
    Assignee: MAZDA MOTOR CORPORATION
    Inventors: Yoshiyuki Uehane, Junji Umemura, Tomoaki Fujiyama, Koji Hadama, Makoto Mihara
  • Patent number: 10180103
    Abstract: Disclosed herein is a technique for providing an engine supercharger allowing an exhaust gas to efficiently act on a turbine in a wide operating range. A turbine for use in a supercharger includes a turbine housing, a turbine scroll formed inside the housing continuously with a turbine lead-in route, and a turbine wheel to turn on an axis of rotation close to a tongue portion. The turbine lead-in route is partitioned by a partition wall into first and second lead-in routes. Exhaust variable valves are provided upstream of the second lead-in route in order to change the flow rate of the exhaust gas to be introduced. When viewed in the direction in which the axis of rotation extends, a downstream end of the partition is aligned with the axis of rotation and the tongue portion.
    Type: Grant
    Filed: February 2, 2017
    Date of Patent: January 15, 2019
    Assignee: MAZDA MOTOR CORPORATION
    Inventors: Yoshiyuki Uehane, Junji Umemura, Hideya Horii, Tomoaki Fujiyama
  • Publication number: 20170342894
    Abstract: A turbocharger engine includes a dual stage turbocharger in which a first turbo unit is disposed on the upstream side of a second turbo unit on an exhaust passage. The turbocharger is disposed in such a manner that a second turbine shaft of the second turbo unit is far from an engine output shaft than a first turbine shaft of the first turbo unit in a plan view in an axis direction of a cylinder. Further, a second turbine is rotated clockwise around an axis thereof in a side view when the turbocharger is viewed from the side of the turbine, and an intra-turbine passage is disposed on the side of an engine body than the second turbine shaft.
    Type: Application
    Filed: May 31, 2017
    Publication date: November 30, 2017
    Applicant: MAZDA MOTOR CORPORATION
    Inventors: Yasushi NIWA, Yoshiyuki UEHANE, Keiji ARAKI
  • Publication number: 20170241329
    Abstract: Disclosed herein is a technique for providing an engine supercharger allowing an exhaust gas to efficiently act on a turbine in a wide operating range. A turbine for use in a supercharger includes a turbine housing, a turbine scroll formed inside the housing continuously with a turbine lead-in route, and a turbine wheel to turn on an axis of rotation close to a tongue portion. The turbine lead-in route is partitioned by a partition wall into first and second lead-in routes. Exhaust variable valves are provided upstream of the second lead-in route in order to change the flow rate of the exhaust gas to be introduced. When viewed in the direction in which the axis of rotation extends, a downstream end of the partition is aligned with the axis of rotation and the tongue portion.
    Type: Application
    Filed: February 2, 2017
    Publication date: August 24, 2017
    Applicant: MAZDA MOTOR CORPORATION
    Inventors: Yoshiyuki UEHANE, Junji UMEMURA, Hideya HORII, Tomoaki FUJIYAMA
  • Publication number: 20170234211
    Abstract: Disclosed herein is a technique for providing an engine supercharger of a reduced size allowing an exhaust gas to be introduced smoothly into a turbine scroll. A turbine for use in this supercharger includes: a turbine lead-in route, into which the exhaust gas is introduced; a turbine scroll formed continuously with the turbine lead-in route to allow the exhaust gas to swirl around inside; a turbine wheel to turn on an axis of rotation; a turbine lead-out route; a wastegate passage to bypass the exhaust gas around the turbine scroll; and a wastegate valve. The turbine lead-in route includes a throat portion having a tapered downstream portion. The wastegate passage branches from that throat portion.
    Type: Application
    Filed: February 2, 2017
    Publication date: August 17, 2017
    Applicant: MAZDA MOTOR CORPORATION
    Inventors: Yoshiyuki UEHANE, Junji UMEMURA, Tomoaki FUJIYAMA, Koji HADAMA, Makoto MIHARA
  • Patent number: 9416725
    Abstract: A turbocharging device of an engine for a vehicle is provided. The turbocharging device includes a turbocharger for turbocharging intake air, an introduction passage connected to an introducing section of a compressor of the turbocharger, a discharge passage connected to a discharging section of the compressor of the turbocharger, a bypass passage connecting the introduction passage to the discharge passage and bypassing the compressor, and a bypass valve for opening and closing the bypass passage. A throttle part throttling a flow passage area of the introduction passage is formed in an inner circumferential surface of a part of the introduction passage, upstream of a connection part of the introduction passage with the bypass passage.
    Type: Grant
    Filed: August 18, 2014
    Date of Patent: August 16, 2016
    Assignee: Mazda Motor Corporation
    Inventors: Yoshiyuki Uehane, Junji Umemura, Atsuhiro Hatabu
  • Publication number: 20150052891
    Abstract: A turbocharging device of an engine for a vehicle is provided. The turbocharging device includes a turbocharger for turbocharging intake air, an introduction passage connected to an introducing section of a compressor of the turbocharger, a discharge passage connected to a discharging section of the compressor of the turbocharger, a bypass passage connecting the introduction passage to the discharge passage and bypassing the compressor, and a bypass valve for opening and closing the bypass passage. A throttle part throttling a flow passage area of the introduction passage is formed in an inner circumferential surface of a part of the introduction passage, upstream of a connection part of the introduction passage with the bypass passage.
    Type: Application
    Filed: August 18, 2014
    Publication date: February 26, 2015
    Inventors: Yoshiyuki Uehane, Junji Umemura, Atsuhiro Hatabu