Patents by Inventor Yosuke Hagihara

Yosuke Hagihara has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240146604
    Abstract: An information of a network to which a new function unit has been added is easily acquired. A relay device installed in a vehicle includes: a detection unit configured to detect a new function unit being a function unit that is newly added to a network including an existing function unit being one or a plurality of function units; a relay unit configured to relay a frame between the function units; and an acquisition unit configured to acquire, from the frame, relayed by the relay unit, between the new function unit detected by the detection unit and the existing function unit, function unit information that includes information regarding a network configuration of a layer of a lower order than an application layer, the function unit information being of at least one of the new function unit and the existing function unit.
    Type: Application
    Filed: January 4, 2024
    Publication date: May 2, 2024
    Applicants: SUMITOMO ELECTRIC INDUSTRIES, LTD., SUMITOMO WIRING SYSTEMS, LTD., AUTONETWORKS TECHNOLOGIES, LTD.
    Inventors: Yojiro SUYAMA, Hideyuki Tanaka, Tatsuya Izumi, Yusuke Yamamoto, Takeshi Hagihara, Darmawan Go, Yosuke Shimizu
  • Patent number: 11951917
    Abstract: An in-vehicle communication system includes a first switching device and a second switching device each configured to relay, via a transmission path, information between a plurality of function units mounted to a vehicle. Upon being supplied with a power source voltage via a power-source-dedicated line from a power source device mounted to the vehicle, the first switching device supplies a power source voltage via the transmission path to one or a plurality of the function units and the second switching device that are connected to the first switching device, and the second switching device extracts a power source voltage from the transmission path, and supplies a power source voltage via the transmission path to one or a plurality of the function units that are connected to the second switching device.
    Type: Grant
    Filed: May 7, 2020
    Date of Patent: April 9, 2024
    Assignees: SUMITOMO ELECTRIC INDUSTRIES, LTD., SUMITOMO WIRING SYSTEMS, LTD., AUTONETWORKS TECHNOLOGIES, LTD.
    Inventors: Akihito Iwata, Takeshi Hagihara, Darmawan Go, Yosuke Shimizu
  • Patent number: 11948995
    Abstract: A capacitor includes a silicon substrate, a conductor layer, and a dielectric layer. The silicon substrate has a principal surface including a capacitance generation region and a non-capacitance generation region. The silicon substrate includes a porous part provided in a thickness direction in the capacitance generation region. The conductor layer includes a surface layer part at least covering part of a surface of the capacitance generation region and a filling part filled in at least part of the porous part. The dielectric layer is provided between an inner surface of the porous part and the filling part. The porous part includes a macroporous part having macro pores and a nanoporous part formed in at least part of inner surfaces of the macro pores and having nano pores smaller than the macro pores.
    Type: Grant
    Filed: January 22, 2021
    Date of Patent: April 2, 2024
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Kazushi Yoshida, Yosuke Hagihara
  • Patent number: 11784000
    Abstract: A capacitor includes a silicon substrate, a conductor layer, and a dielectric layer. The silicon substrate has a principal surface including a capacitance generation region and a non-capacitance generation region. The silicon substrate has a porous part provided in a thickness direction in the capacitance generation region. The conductor layer has a surface layer part at least covering part of a surface of the capacitance generation region and a filling part filled in at least part of fine pores of the porous part. The dielectric layer is provided between an inner surface of the fine pores and the filling part.
    Type: Grant
    Filed: September 10, 2021
    Date of Patent: October 10, 2023
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Kazushi Yoshida, Yosuke Hagihara, Takumi Taura
  • Publication number: 20230178627
    Abstract: A capacitor includes a silicon substrate, a conductor layer, and a dielectric layer. The silicon substrate has a principal surface including a capacitance generation region and a non-capacitance generation region. The silicon substrate includes a porous part provided in a thickness direction in the capacitance generation region. The conductor layer includes a surface layer part at least covering part of a surface of the capacitance generation region and a filling part filled in at least part of the porous part. The dielectric layer is provided between an inner surface of the porous part and the filling part. The porous part includes a macroporous part having macro pores and a nanoporous part formed in at least part of inner surfaces of the macro pores and having nano pores smaller than the macro pores.
    Type: Application
    Filed: January 22, 2021
    Publication date: June 8, 2023
    Inventors: Kazushi YOSHIDA, Yosuke HAGIHARA
  • Publication number: 20210407734
    Abstract: A capacitor includes a silicon substrate, a conductor layer, and a dielectric layer. The silicon substrate has a principal surface including a capacitance generation region and a non-capacitance generation region. The silicon substrate has a porous part provided in a thickness direction in the capacitance generation region. The conductor layer has a surface layer part at least covering part of a surface of the capacitance generation region and a filling part filled in at least part of fine pores of the porous part. The dielectric layer is provided between an inner surface of the fine pores and the filling part.
    Type: Application
    Filed: September 10, 2021
    Publication date: December 30, 2021
    Inventors: Kazushi Yoshida, Yosuke Hagihara, Takumi Taura
  • Patent number: 10989603
    Abstract: The disclosure has a configuration including: a supporting substrate having a cavity; at least one bridge section extending directly above the cavity and having at least one end supported by the supporting substrate and an other end; and a thermopile wiring formed in the bridge section and including hot junctions in the bridge section and cold junctions directly above the supporting substrate, the hot junctions being connected to the cold junctions. The bridge section is provided with: at least one breakage detection wiring for detecting breakage of the bridge section; and at least one heater wiring. The breakage detection wiring is wired along the thermopile wiring. The heater wiring is wired such that part of the heater wiring is in an area between the other end of the bridge section and the hot junctions.
    Type: Grant
    Filed: February 15, 2018
    Date of Patent: April 27, 2021
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Katsumi Kakimoto, Takafumi Okudo, Yosuke Hagihara, Akira Matsuura
  • Publication number: 20190383666
    Abstract: The disclosure has a configuration including: a supporting substrate having a cavity; at least one bridge section extending directly above the cavity and having at least one end supported by the supporting substrate and an other end; and a thermopile wiring formed in the bridge section and including hot junctions in the bridge section and cold junctions directly above the supporting substrate, the hot junctions being connected to the cold junctions. The bridge section is provided with: at least one breakage detection wiring for detecting breakage of the bridge section; and at least one heater wiring. The breakage detection wiring is wired along the thermopile wiring. The heater wiring is wired such that part of the heater wiring is in an area between the other end of the bridge section and the hot junctions.
    Type: Application
    Filed: February 15, 2018
    Publication date: December 19, 2019
    Inventors: Katsumi KAKIMOTO, Takafumi OKUDO, Yosuke HAGIHARA, Akira MATSUURA
  • Publication number: 20180351006
    Abstract: Infrared sensor as an aspect of the present disclosure includes substrate, processor disposed on substrate, infrared sensing element disposed above processor, package that is disposed on substrate and covers infrared sensing element, and heat insulating section disposed between infrared sensing element and processor at an overlapped region of processor and infrared sensing element. Heat insulating section has a thermal conductivity smaller than substrate.
    Type: Application
    Filed: November 9, 2016
    Publication date: December 6, 2018
    Inventors: YOSUKE HAGIHARA, YOICHI NISHIJIMA, TAKAFUMI OKUDO, KATSUMI KAKIMOTO, NAYUTA MINAMI, NOBUAKI SHIMAMOTO
  • Patent number: 10119865
    Abstract: An infrared sensor, which achieves a low manufacturing cost, or has high sensitivity, or in which an increase in heat capacity is reduced, is provided. The infrared sensor includes a first infrared absorbing portion, an infrared sensing portion for sensing infrared rays based on infrared rays absorbed by the first infrared absorbing portion, and a plurality of protrusions including metal and disposed apart from each other on a surface of the first infrared absorbing portion. Since an absorption rate of infrared rays is improved, sensitivity can be improved, or an increase in heat capacity can be reduced.
    Type: Grant
    Filed: May 30, 2014
    Date of Patent: November 6, 2018
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Katsumi Kakimoto, Masaaki Saito, Yosuke Hagihara, Takafumi Okudo, Yoichi Nishijima, Ryo Osabe, Naoki Ushiyama, Sumio Akai, Yasufumi Shibata
  • Publication number: 20170320457
    Abstract: A detection device is used with a vehicle including a cabin, a ceiling, pillars, a driver seat, and a passenger seat. The detection device includes a detector disposed on the ceiling or the pillars of the vehicle and detecting an object in the cabin while not contacting the object, and a scanning unit that moves the detector for scan. The detection device can detect a temperature of the object accurately, and control air-conditioning comfortably to the object.
    Type: Application
    Filed: November 27, 2015
    Publication date: November 9, 2017
    Applicant: Panasonic Intellectual Property Management Co., Ltd.
    Inventors: KATSUMI KAKIMOTO, HIROSHI YAMANAKA, TAKANORI SUGIYAMA, ISAO HATTORI, YUICHI HIGUCHI, HIDEYUKI ARAI, YOSUKE HAGIHARA
  • Publication number: 20160153837
    Abstract: An infrared sensor, which achieves a low manufacturing cost, or has high sensitivity, or in which an increase in heat capacity is reduced, is provided. The infrared sensor includes a first infrared absorbing portion, an infrared sensing portion for sensing infrared rays based on infrared rays absorbed by the first infrared absorbing portion, and a plurality of protrusions including metal and disposed apart from each other on a surface of the first infrared absorbing portion. Since an absorption rate of infrared rays is improved, sensitivity can be improved, or an increase in heat capacity can be reduced.
    Type: Application
    Filed: May 30, 2014
    Publication date: June 2, 2016
    Inventors: KATSUMI KAKIMOTO, MASAAKI SAITO, YOSUKE HAGIHARA, TAKAFUMI OKUDO, YOICHI NISHIJIMA, RYO OSABE, NAOKI USHIYAMA, SUMIO AKAI, YASUFUMI SHIBATA
  • Patent number: 8426864
    Abstract: The infrared sensor (1) includes a base (10), and an infrared detection element (3) formed over a surface of the base (10). The infrared detection element (3) comprises an infrared absorption member (33) in the form of a thin film configured to absorb infrared, and a temperature detection member (30) configured to measure a temperature difference between the infrared absorption member (33) and the base (10). The temperature detection member (30) includes a p-type polysilicon layer (35) formed over the infrared absorption member (33) and the base (10), an n-type polysilicon layer (34) formed over the infrared absorption member (33) and the base (10) without contact with the p-type polysilicon layer (33), and a connection layer (36) configured to electrically connect the p-type polysilicon layer (35) to the n-type polysilicon layer (34). Each of the p-type polysilicon layer (35) and the n-type polysilicon layer (34) has an impurity concentration in a range of 1018 to 1020 cm?3.
    Type: Grant
    Filed: September 24, 2009
    Date of Patent: April 23, 2013
    Assignee: Panasonic Corporation
    Inventors: Koji Tsuji, Yosuke Hagihara, Naoki Ushiyama
  • Publication number: 20110175100
    Abstract: The infrared sensor (1) includes a base (10), and an infrared detection element (3) formed over a surface of the base (10). The infrared detection element (3) comprises an infrared absorption member (33) in the form of a thin film configured to absorb infrared, and a temperature detection member (30) configured to measure a temperature difference between the infrared absorption member (33) and the base (10). The temperature detection member (30) includes a p-type polysilicon layer (35) formed over the infrared absorption member (33) and the base (10), an n-type polysilicon layer (34) formed over the infrared absorption member (33) and the base (10) without contact with the p-type polysilicon layer (33), and a connection layer (36) configured to electrically connect the p-type polysilicon layer (35) to the n-type polysilicon layer (34). Each of the p-type polysilicon layer (35) and the n-type polysilicon layer (34) has an impurity concentration in a range of 1018 to 1020 cm?3.
    Type: Application
    Filed: September 24, 2009
    Publication date: July 21, 2011
    Applicant: Panasonic Electric Works Co., Ltd.
    Inventors: Koji Tsuji, Yosuke Hagihara, Naoki Ushiyama
  • Publication number: 20110175145
    Abstract: The infrared sensor (1) includes a base (10), and an infrared detection element (3) formed over a surface of the base (10). The infrared detection element (3) includes an infrared absorption member (33) in the form of a thin film configured to absorb infrared, a temperature detection member (30) configured to measure a temperature difference between the infrared absorption member (33) and the base (10), and a safeguard film (39). The infrared element (3) is spaced from the surface of the base (10) for thermal insulation. The temperature detection member (30) includes a p-type polysilicon layer (35) formed over the infrared absorption member (33) and the base (10), an n-type polysilicon layer (34) formed over the infrared absorption member (33) and the base (10) without contact with the p-type polysilicon layer (35), and a connection layer (36) configured to electrically connect the p-type polysilicon layer (35) to the n-type polysilicon layer (34).
    Type: Application
    Filed: September 24, 2009
    Publication date: July 21, 2011
    Inventors: Koji Tsuji, Yosuke Hagihara, Naoki Ushiyama
  • Publication number: 20100182111
    Abstract: A micro relay includes a magnetic member and a permanent magnet in addition to a main substrate, a stationary contact, an armature and a coil. The magnetic member includes a core located in a first though hole of the main substrate. The permanent magnet is located at an end of the magnetic member or at a place within the magnetic member. The main substrate has a plurality of laminated layers. The coil is formed of a plurality of planer coils connected in series. The plurality of planer coils are formed on the plurality of laminated layers, respectively and are located around the core.
    Type: Application
    Filed: June 25, 2008
    Publication date: July 22, 2010
    Inventors: Yosuke Hagihara, Takeshi Hashimoto, Riichi Uotome, Hideki Enomoto, Katsumi Kakimoto, Koji Yokoyama, Shinichi Kishimoto
  • Patent number: 6339236
    Abstract: An improved light responsive semiconductor switch with shorted load protection capable of successfully interrupting a load overcurrent. The switch is includes an output transistor which is triggered by a photovoltaic element to connect a load to a power source thereof, and an overcurrent sensor which provides an overcurrent signal upon seeing an overcurrent condition in the load. A shunt transistor is connected in series with a current limiting resistive element across the photovoltaic element to define a shunt path of flowing the current from the photovoltaic element through the current limiting resistive element away from the output transistor. A latch circuit is included to be energized by the photovoltaic element and to provide an interruption signal once the overcurrent signal is received and hold the interruption signal.
    Type: Grant
    Filed: September 27, 2000
    Date of Patent: January 15, 2002
    Assignee: Matsushita Electric Works, Ltd.
    Inventors: Kazushi Tomii, Hideo Nagahama, Yosuke Hagihara