Patents by Inventor Youfeng He

Youfeng He has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10431671
    Abstract: A method is provided for fabricating fin field-effect transistors. The method includes providing a substrate. The method also includes forming a plurality of fins on a surface of the substrate. Further the method includes forming a transitional layer having atoms identical to atoms of the fins on side and top surfaces of the plurality of fins by a deposition process. Further, the method also includes performing an oxidation process to convert the transitional layer and a surface portion of the fins into a dielectric material to form a gate dielectric layer on the plurality of fins.
    Type: Grant
    Filed: December 7, 2017
    Date of Patent: October 1, 2019
    Assignee: Semiconductor Manufacturing International (Shanghai) Corporation
    Inventors: Xiaopeng Yu, Youfeng He, Zhengling Chen
  • Publication number: 20180097090
    Abstract: A method is provided for fabricating fin field-effect transistors. The method includes providing a substrate. The method also includes forming a plurality of fins on a surface of the substrate. Further the method includes forming a transitional layer having atoms identical to atoms of the fins on side and top surfaces of the plurality of fins by a deposition process. Further, the method also includes performing an oxidation process to convert the transitional layer and a surface portion of the fins into a dielectric material to form a gate dielectric layer on the plurality of fins.
    Type: Application
    Filed: December 7, 2017
    Publication date: April 5, 2018
    Inventors: XIAOPENG YU, YOUFENG HE, ZHENGLING CHEN
  • Patent number: 9871120
    Abstract: A method is provided for fabricating fin field-effect transistors. The method includes providing a substrate. The method also includes forming a plurality of fins on a surface of the substrate. Further the method includes forming a transitional layer having atoms identical to atoms of the fins on side and top surfaces of the plurality of fins by a deposition process. Further, the method also includes performing an oxidation process to convert the transitional layer and a surface portion of the fins into a dielectric material to form a gate dielectric layer on the plurality of fins.
    Type: Grant
    Filed: May 14, 2015
    Date of Patent: January 16, 2018
    Assignee: SEMICONDUCTOR MANUFACTURING INTERNATIONAL (SHANGHAI) CORPORATION
    Inventors: Xiaopeng Yu, Youfeng He, Zhengling Chen
  • Publication number: 20150380241
    Abstract: A method is provided for fabricating fin field-effect transistors. The method includes providing a substrate. The method also includes forming a plurality of fins on a surface of the substrate. Further the method includes forming a transitional layer having atoms identical to atoms of the fins on side and top surfaces of the plurality of fins by a deposition process. Further, the method also includes performing an oxidation process to convert the transitional layer and a surface portion of the fins into a dielectric material to form a gate dielectric layer on the plurality of fins.
    Type: Application
    Filed: May 14, 2015
    Publication date: December 31, 2015
    Inventors: XIAOPENG YU, YOUFENG HE, ZHENGLING CHEN
  • Patent number: 8933428
    Abstract: The invention provides a phase change memory and a method for forming the phase change memory. The phase change memory includes a storage region and a peripheral circuit region. The peripheral circuit region has a peripheral substrate, a plurality of peripheral shallow trench isolation (STI) units in the peripheral substrate, and at least one MOS transistor on the peripheral substrate and between the peripheral STI units. The storage region has a storage substrate, an N-type ion buried layer on the storage substrate, a plurality of vertical LEDs on the N-type ion buried layer, a plurality of storage shallow trench isolation (STI) units between the vertical LEDs, and a plurality of phase change layers on the vertical LED and between the storage STI units. The storage STI units have thickness substantially equal to thickness of the vertical LEDs. The peripheral STI units have thickness substantially equal to thickness of the storage STI units. The N-type conductive region contains SiC.
    Type: Grant
    Filed: June 5, 2013
    Date of Patent: January 13, 2015
    Assignee: Semiconductor Manufacturing International (Beijing) Corporation
    Inventors: Fumitake Mieno, Youfeng He
  • Publication number: 20140191301
    Abstract: Transistors and fabrication methods are provided. A first sidewall can be formed on each sidewall of a gate structure. A second sidewall can be formed on the first sidewall. The first sidewall can be made of a doped material. After forming a source and a drain, a metal silicide layer can be formed on the source and the drain. The second sidewall can be removed to expose a surface portion of the semiconductor substrate between the metal silicide layer and the first silicide layer. A stress layer can be formed on the exposed surface portion of the semiconductor substrate, on the metal silicide layer, on the first sidewall, and on the gate.
    Type: Application
    Filed: November 22, 2013
    Publication date: July 10, 2014
    Applicant: Semiconductor Manufacturing International (Shanghai) Corporation
    Inventors: YOUFENG HE, YONGGEN HE
  • Publication number: 20130320416
    Abstract: A semiconductor device and a method for forming the same are provided. The method includes: providing a substrate having a gate structure and first spacers on both sidewalls of the gate structure formed on a top surface of the substrate; forming first openings in the substrate by using the first spacers as a mask, wherein the first openings are located on both sides of the gate structure; forming second openings by etching the first openings with an etching gas, wherein each of the second openings is an expansion of a corresponding one of the first openings toward the gate structure and extends to underneath an adjacent first spacer; and forming epitaxial layers in the first openings and the second openings.
    Type: Application
    Filed: August 8, 2013
    Publication date: December 5, 2013
    Applicant: SEMICONDUCTOR MANUFACTURING INTERNATIONAL (BEIJING) CORPORATION
    Inventor: Youfeng He
  • Patent number: 8581311
    Abstract: A semiconductor device and a method for forming the same are provided. The method includes: providing a substrate having a gate structure and first spacers on both sidewalls of the gate structure formed on a top surface of the substrate; forming first openings in the substrate by using the first spacers as a mask, wherein the first openings are located on both sides of the gate structure; forming second openings by etching the first openings with an etching gas, wherein each of the second openings is an expansion of a corresponding one of the first openings toward the gate structure and extends to underneath an adjacent first spacer; and forming epitaxial layers in the first openings and the second openings.
    Type: Grant
    Filed: August 8, 2013
    Date of Patent: November 12, 2013
    Assignee: Semiconductor Manufacturing International (Beijing) Corporation
    Inventor: Youfeng He
  • Publication number: 20130264537
    Abstract: The invention provides a phase change memory and a method for forming the phase change memory. The phase change memory includes a storage region and a peripheral circuit region. The peripheral circuit region has a peripheral substrate, a plurality of peripheral shallow trench isolation (STI) units in the peripheral substrate, and at least one MOS transistor on the peripheral substrate and between the peripheral STI units. The storage region has a storage substrate, an N-type ion buried layer on the storage substrate, a plurality of vertical LEDs on the N-type ion buried layer, a plurality of storage shallow trench isolation (STI) units between the vertical LEDs, and a plurality of phase change layers on the vertical LED and between the storage STI units. The storage STI units have thickness substantially equal to thickness of the vertical LEDs. The peripheral STI units have thickness substantially equal to thickness of the storage STI units. The N-type conductive region contains SiC.
    Type: Application
    Filed: June 5, 2013
    Publication date: October 10, 2013
    Inventors: Fumitake Mieno, Youfeng He
  • Patent number: 8536001
    Abstract: A method for forming a semiconductor device is provided. The exemplary method includes: providing a substrate having a gate structure and first spacers on both sidewalls of the gate structure formed on a top surface of the substrate; forming first openings in the substrate by using the first spacers as a mask, wherein the first openings are located on both sides of the gate structure; forming second openings by etching the first openings with an etching gas, wherein each of the second openings is an expansion of a corresponding one of the first openings toward the gate structure and extends to underneath an adjacent first spacer; and forming epitaxial layers in the first openings and the second openings.
    Type: Grant
    Filed: November 29, 2011
    Date of Patent: September 17, 2013
    Assignee: Semiconductor Manufacturing International (Beijing) Corporation
    Inventor: Youfeng He
  • Patent number: 8481348
    Abstract: The invention provides a phase change memory and a method for forming the phase change memory. The phase change memory includes a storage region and a peripheral circuit region. The peripheral circuit region has a peripheral substrate, a plurality of peripheral shallow trench isolation (STI) units in the peripheral substrate, and at least one MOS transistor on the peripheral substrate and between the peripheral STI units. The storage region has a storage substrate, an N-type ion buried layer on the storage substrate, a plurality of vertical LEDs on the N-type ion buried layer, a plurality of storage shallow trench isolation (STI) units between the vertical LEDs, and a plurality of phase change layers on the vertical LED and between the storage STI units. The storage STI units have thickness substantially equal to thickness of the vertical LEDs. The peripheral STI units have thickness substantially equal to thickness of the storage STI units. The N-type conductive region contains SiC.
    Type: Grant
    Filed: July 5, 2011
    Date of Patent: July 9, 2013
    Assignee: Semiconductor Manufacturing International Corp.
    Inventors: Fumitake Mieno, Youfeng He
  • Patent number: 8409883
    Abstract: The invention provides a phase change memory and a method for forming the phase change memory. The phase change memory includes a storage region and a peripheral circuit region. The peripheral circuit region has a peripheral substrate, peripheral shallow trench isolation (STI) units in the peripheral substrate, and MOS transistors on the peripheral substrate and between the peripheral STI units. The storage region has a storage substrate, an N-type ion buried layer on the storage substrate, vertical LEDs on the on the N-type ion buried layer, storage shallow trench isolation (STI) units between the vertical LEDs, and phase change layers on the vertical LEDs and between the storage STI units. The storage STI units have thickness equal to thickness of the vertical LEDs. Each vertical LED comprises an N-type conductive region on the N-type ion buried layer, and a P-type conductive region on the N-type conductive region. The P-type conductive region contains SiGe.
    Type: Grant
    Filed: June 9, 2011
    Date of Patent: April 2, 2013
    Assignee: Semiconductor Manufacturing International Corp.
    Inventors: Fumitake Mieno, Youfeng He
  • Publication number: 20120161092
    Abstract: The invention provides a phase change memory and a method for forming the phase change memory. The phase change memory includes a storage region and a peripheral circuit region. The peripheral circuit region has a peripheral substrate, a plurality of peripheral shallow trench isolation (STI) units in the peripheral substrate, and at least one MOS transistor on the peripheral substrate and between the peripheral STI units. The storage region has a storage substrate, an N-type ion buried layer on the storage substrate, a plurality of vertical LEDs on the N-type ion buried layer, a plurality of storage shallow trench isolation (STI) units between the vertical LEDs, and a plurality of phase change layers on the vertical LED and between the storage STI units. The storage STI units have thickness substantially equal to thickness of the vertical LEDs. The peripheral STI units have thickness substantially equal to thickness of the storage STI units. The N-type conductive region contains SiC.
    Type: Application
    Filed: July 5, 2011
    Publication date: June 28, 2012
    Applicant: Semiconductor Manufacturing International (Beijing) Corporation
    Inventors: Fumitake Mieno, Youfeng He
  • Publication number: 20120161097
    Abstract: The invention provides a phase change memory and a method for forming the phase change memory. The phase change memory includes a storage region and a peripheral circuit region. The peripheral circuit region has a peripheral substrate, peripheral shallow trench isolation (STI) units in the peripheral substrate, and MOS transistors on the peripheral substrate and between the peripheral STI units. The storage region has a storage substrate, an N-type ion buried layer on the storage substrate, vertical LEDs on the on the N-type ion buried layer, storage shallow trench isolation (STI) units between the vertical LEDs, and phase change layers on the vertical LEDs and between the storage STI units. The storage STI units have thickness equal to thickness of the vertical LEDs. Each vertical LED comprises an N-type conductive region on the N-type ion buried layer, and a P-type conductive region on the N-type conductive region. The P-type conductive region contains SiGe.
    Type: Application
    Filed: June 9, 2011
    Publication date: June 28, 2012
    Applicant: Semiconductor Manufacturing International (Beijing) Corporation
    Inventors: Fumitake MIENO, Youfeng HE
  • Publication number: 20120139016
    Abstract: A semiconductor device and a method for forming the same are provided. The method includes: providing a substrate having a gate structure and first spacers on both sidewalls of the gate structure formed on a top surface of the substrate; forming first openings in the substrate by using the first spacers as a mask, wherein the first openings are located on both sides of the gate structure; forming second openings by etching the first openings with an etching gas, wherein each of the second openings is an expansion of a corresponding one of the first openings toward the gate structure and extends to underneath an adjacent first spacer; and forming epitaxial layers in the first openings and the second openings.
    Type: Application
    Filed: November 29, 2011
    Publication date: June 7, 2012
    Applicant: Semiconductor Manufacturing International (Beijing) Corporation
    Inventor: Youfeng He