Patents by Inventor Yougandh Chitre

Yougandh Chitre has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10471258
    Abstract: Selective high-frequency spinal cord modulation for inhibiting pain with reduced side effects and associated systems and methods are disclosed. In particular embodiments, high-frequency modulation in the range of from about 1.5 KHz to about 50 KHz may be applied to the patient's spinal cord region to address low back pain without creating unwanted sensory and/or motor side effects. In other embodiments, modulation in accordance with similar parameters can be applied to other spinal or peripheral locations to address other indications.
    Type: Grant
    Filed: July 26, 2018
    Date of Patent: November 12, 2019
    Assignee: Nevro Corp.
    Inventors: Konstantinos Alataris, Andre B. Walker, Jon Parker, Yougandh Chitre, Sangsoo Wesley Park, James R. Thacker
  • Patent number: 10463857
    Abstract: A spinal cord modulation system is disclosed. While in one embodiment the system is used for the treatment of pain, other embodiments are also provided. In particular embodiments, the spinal cord modulation system generates and delivers an electrical therapy signal at a frequency in the range of from about 5 kHz to about 15 kHz to address pain without creating unwanted sensory and/or motor side effects. The system may further include various signal delivery devices to deliver the therapy signal to a patient's spinal cord region.
    Type: Grant
    Filed: October 23, 2014
    Date of Patent: November 5, 2019
    Assignee: Nevro Corp.
    Inventors: Konstantinos Alataris, Andre B. Walker, Jon Parker, Yougandh Chitre, Sangsoo Wesley Park, James R. Thacker
  • Publication number: 20190320936
    Abstract: Systems and methods for positioning implanted devices in a patient are disclosed. A method in accordance with a particular embodiment includes, for each of a plurality of patients, receiving a target location from which to deliver a modulation signal to the patient's spinal cord. The method further includes implanting a signal delivery device within a vertebral foramen of each patient, and positioning an electrical contact carried by the signal delivery device to be within ±5 mm. of the target location, without the use of fluoroscopy. The method can still further include, for each of the plurality of patients, activating the electrical contact to modulate neural activity at the spinal cord. In further particular embodiments, RF signals, ultrasound, magnetic fields, and/or other techniques are used to locate the signal delivery device.
    Type: Application
    Filed: February 27, 2019
    Publication date: October 24, 2019
    Inventors: James R. Thacker, Jon Parker, Yougandh Chitre
  • Publication number: 20190254706
    Abstract: Insertion devices and associated systems and methods for the percutaneous placement of patient leads are disclosed herein. A system in accordance with a particular embodiment includes a cannula having a lumen and a first dilator. The first dilator can be positioned within the lumen and the first dilator and the cannula can be used to create a percutaneous entry point. An additional dilator can be positioned over the first dilator and advanced into the percutaneous entry point to expand the percutaneous entry point. A final dilator can be inserted into the patient and two leads can be advanced into the patient through the final dilator.
    Type: Application
    Filed: February 25, 2019
    Publication date: August 22, 2019
    Inventors: Yougandh Chitre, Andre B. Walker, Vivek Sharma
  • Patent number: 10245433
    Abstract: A spinal cord modulation system is disclosed. While in one embodiment the system is used for the treatment of pain, other embodiments are also provided. In particular embodiments, the spinal cord modulation system generates and delivers an electrical therapy signal at a frequency in the range of from about 1.5 kHz to about 100 kHz to address pain without creating unwanted sensory and/or motor side effects. The system may further include various signal delivery devices to deliver the therapy signal to a patient's spinal cord region.
    Type: Grant
    Filed: August 7, 2015
    Date of Patent: April 2, 2019
    Assignee: Nevro Corp.
    Inventors: Konstantinos Alataris, Andre B. Walker, Jon Parker, Yougandh Chitre, Sangsoo Wesley Park, James R. Thacker
  • Patent number: 10226626
    Abstract: Selective high-frequency spinal cord modulation for inhibiting pain with reduced side effects and associated systems and methods are disclosed. In particular embodiments, a programmer has instructions that, in response to an input, select between a paresthesia-inducing therapy program that includes a frequency of less than 1,500 Hz, and a non-paresthesia-inducing therapy program that includes a frequency in range from 1.5 kHz to 50 kHz.
    Type: Grant
    Filed: April 5, 2016
    Date of Patent: March 12, 2019
    Assignee: Nevro Corp.
    Inventors: Konstantinos Alataris, Andre B. Walker, Jon Parker, Yougandh Chitre, Sangsoo Wesley Park, James R. Thacker
  • Patent number: 10220208
    Abstract: Selective high-frequency spinal cord modulation for inhibiting pain with reduced side effects and associated systems and methods are disclosed. In particular embodiments, a programmer has instructions that, in response to an input, select between a paresthesia-inducing electrical therapy signal having a frequency of less than 1.2 kHz, and a non-paresthesia-inducing electrical therapy signal having a frequency in a range from 1.5 kHz to 100 kHz.
    Type: Grant
    Filed: April 5, 2016
    Date of Patent: March 5, 2019
    Assignee: Nevro Corp.
    Inventors: Konstantinos Alataris, Andre B. Walker, Jon Parker, Yougandh Chitre, Sangsoo Wesley Park, James R. Thacker
  • Patent number: 10220209
    Abstract: Selective high-frequency spinal cord modulation for inhibiting pain with reduced side effects and associated systems and methods are disclosed. In particular embodiments, a programmer has a computer-readable medium containing executable instructions in memory to, in response to an input, select between at least two therapy programs: a first having a frequency of less than 1,500 Hz, and a paresthesia-inducing amplitude between 3 mA and 10 mA; and a second having a frequency between 5 kHz and 15 kHz, and a non-paresthesia-inducing amplitude between 0.5 mA and 10 mA.
    Type: Grant
    Filed: April 5, 2016
    Date of Patent: March 5, 2019
    Assignee: Nevro Corp.
    Inventors: Konstantinos Alataris, Andre B. Walker, Jon Parker, Yougandh Chitre, Sangsoo Wesley Park, James R. Thacker
  • Patent number: 10213229
    Abstract: Insertion devices and associated systems and methods for the percutaneous placement of patient leads are disclosed herein. A system in accordance with a particular embodiment includes a cannula having a lumen and a first dilator. The first dilator can be positioned within the lumen and the first dilator and the cannula can be used to create a percutaneous entry point. An additional dilator can be positioned over the first dilator and advanced into the percutaneous entry point to expand the percutaneous entry point. A final dilator can be inserted into the patient and two leads can be advanced into the patient through the final dilator.
    Type: Grant
    Filed: March 30, 2016
    Date of Patent: February 26, 2019
    Assignee: Nevro Corp.
    Inventors: Yougandh Chitre, Andre B. Walker, Vivek Sharma
  • Patent number: 10195433
    Abstract: Selective high-frequency spinal cord modulation for inhibiting pain with reduced side affects and associated systems and methods are disclosed. In particular embodiments, a programmer has instructions that, in response to an input, select between at least first and second sets of therapy signal parameters, the first set including a frequency of less than 1.2 kHz and generating a paresthesia-inducing electrical therapy signal, and the second set including a frequency in a range from 1.5 kHz to 50 kHz and generating a non-paresthesia-inducing electrical therapy signal.
    Type: Grant
    Filed: April 5, 2016
    Date of Patent: February 5, 2019
    Assignee: Nevro Corp.
    Inventors: Konstantinos Alataris, Andre B. Walker, Jon Parker, Yougandh Chitre, Sangsoo Wesley Park, James R. Thacker
  • Publication number: 20180369595
    Abstract: Molded headers, implantable signal generators having molded headers, and associated systems and methods are disclosed herein. An implantable signal generator in accordance with a particular embodiment includes a can having a shell and a battery positioned at least partially within the shell. An output terminal can be operably coupled to the battery and positioned to provide electrical power to a signal delivery device. A pre-molded header having a plurality of openings can be coupled to the can, and the output terminal can be positioned at least partially within an individual opening.
    Type: Application
    Filed: April 27, 2018
    Publication date: December 27, 2018
    Inventors: Vivek Sharma, Jon Parker, Yougandh Chitre, Andre B. Walker
  • Publication number: 20180345018
    Abstract: Selective high-frequency spinal cord modulation for inhibiting pain with reduced side effects and associated systems and methods are disclosed. In particular embodiments, high-frequency modulation in the range of from about 1.5 KHz to about 50 KHz may be applied to the patient's spinal cord region to address low back pain without creating unwanted sensory and/or motor side effects. In other embodiments, modulation in accordance with similar parameters can be applied to other spinal or peripheral locations to address other indications.
    Type: Application
    Filed: July 27, 2018
    Publication date: December 6, 2018
    Inventors: Konstantinos Alataris, Andre B. Walker, Jon Parker, Yougandh Chitre, Sangsoo Wesley Park, James R. Thacker
  • Publication number: 20180345017
    Abstract: Selective high-frequency spinal cord modulation for inhibiting pain with reduced side effects and associated systems and methods are disclosed. In particular embodiments, high-frequency modulation in the range of from about 1.5 KHz to about 50 KHz may be applied to the patient's spinal cord region to address low back pain without creating unwanted sensory and/or motor side effects. In other embodiments, modulation in accordance with similar parameters can be applied to other spinal or peripheral locations to address other indications.
    Type: Application
    Filed: July 26, 2018
    Publication date: December 6, 2018
    Inventors: Konstantinos Alataris, Andre B. Walker, Jon Parker, Yougandh Chitre, Sangsoo Wesley Park, James R. Thacker
  • Publication number: 20180333579
    Abstract: Selective high-frequency spinal cord modulation for inhibiting pain with reduced side effects and associated systems and methods are disclosed. In particular embodiments, high-frequency modulation in the range of from about 1.5 KHz to about 50 KHz may be applied to the patient's spinal cord region to address low back pain without creating unwanted sensory and/or motor side effects. In other embodiments, modulation in accordance with similar parameters can be applied to other spinal or peripheral locations to address other indications.
    Type: Application
    Filed: July 27, 2018
    Publication date: November 22, 2018
    Inventors: Konstantinos Alataris, Andre B. Walker, Jon Parker, Yougandh Chitre, Sangsoo Wesley Park, James R. Thacker
  • Patent number: 10065044
    Abstract: Molded headers, implantable signal generators having molded headers, and associated systems and methods are disclosed herein. An implantable signal generator in accordance with a particular embodiment includes a can having a shell and a battery positioned at least partially within the shell. An output terminal can be operably coupled to the battery and positioned to provide electrical power to a signal delivery device. A pre-molded header having a plurality of openings can be coupled to the can, and the output terminal can be positioned at least partially within an individual opening.
    Type: Grant
    Filed: December 28, 2015
    Date of Patent: September 4, 2018
    Assignee: Nevro Corp.
    Inventors: Vivek Sharma, Jon Parker, Yougandh Chitre, Andre B. Walker
  • Publication number: 20180104494
    Abstract: Therapy systems for treating a patient are disclosed. Representative therapy systems include an implantable pulse generator, a signal delivery device electrically coupled to the pulse generator, and a remote control in electrical communication with the implantable pulse generator. The pulse generator can have a computer-readable medium containing instructions for performing a process that comprises collecting the patient status and stimulation parameter; analyzing the collected patient status and stimulation parameter; and establishing a preference baseline containing a preferred stimulation parameter corresponding to a particular patient status.
    Type: Application
    Filed: June 1, 2017
    Publication date: April 19, 2018
    Inventors: Anthony V. Caparso, Jon Parker, Andre B. Walker, Yougandh Chitre
  • Publication number: 20180064945
    Abstract: Communication and charging assemblies for medical devices are disclosed herein. A communication and charging assembly in accordance with a particular embodiment includes a support element, with a communication antenna and a charging coil coupled to the support element. The charging coil can include wire loops having a plurality of wires and the support element can include a mounting surface shaped to match the charging coil and the communication antenna. In one embodiment, the communication and charging assembly are mounted in a header of an implantable signal generator.
    Type: Application
    Filed: September 15, 2017
    Publication date: March 8, 2018
    Inventors: Jon Parker, Yougandh Chitre, Andre B. Walker
  • Publication number: 20170296829
    Abstract: Medical devices and contact assemblies for electrical connections between medical device components are disclosed herein. A medical device in accordance with a particular embodiment includes a patient implantable element having a receiving cavity and at least one contact assembly positioned in the receiving cavity. The contact assembly can include a housing having an annular shape with an inner surface defining at least in part an opening. The contact assembly can further include a contact disposed at least partially within the opening and having a plurality of leaf spring portions.
    Type: Application
    Filed: June 15, 2017
    Publication date: October 19, 2017
    Inventors: Vivek Sharma, Yougandh Chitre, Andre B. Walker
  • Patent number: 9776002
    Abstract: Communication and charging assemblies for medical devices are disclosed herein. A communication and charging assembly in accordance with a particular embodiment includes a support element, with a communication antenna and a charging coil coupled to the support element. The charging coil can include wire loops having a plurality of wires and the support element can include a mounting surface shaped to match the charging coil and the communication antenna. In one embodiment, the communication and charging assembly are mounted in a header of an implantable signal generator.
    Type: Grant
    Filed: December 22, 2014
    Date of Patent: October 3, 2017
    Assignee: Nevro Corp.
    Inventors: Jon Parker, Yougandh Chitre, Andre B. Walker
  • Patent number: 9669219
    Abstract: Therapy systems for treating a patient are disclosed. Representative therapy systems include an implantable pulse generator, a signal delivery device electrically coupled to the pulse generator, and a remote control in electrical communication with the implantable pulse generator. The pulse generator can have a computer-readable medium containing instructions for performing a process that comprises collecting the patient status and stimulation parameter; analyzing the collected patient status and stimulation parameter; and establishing a preference baseline containing a preferred stimulation parameter corresponding to a particular patient status.
    Type: Grant
    Filed: November 17, 2015
    Date of Patent: June 6, 2017
    Assignee: Nevro Corp.
    Inventors: Anthony V. Caparso, Jon Parker, Andre B. Walker, Yougandh Chitre