Patents by Inventor Yougang Mao

Yougang Mao has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10562937
    Abstract: Spin-labeled ice binding compounds (IBCs) including ice binding proteins (IBPs) or antifreeze proteins (AFPs) and their analogs may carry paramagnetic centers for dynamic nuclear polarization (DNP), for enhancing nuclear magnetic resonance (NMR) signal intensities. Use of spin-labeled IBCs to perform DNP exploits the IBCs' ability to homogeneously distribute the paramagnetic centers in frozen water solution at low temperature, leading to high DNP efficiency. Other advantages of using spin-labeled IBCs include cryo-protecting biological samples; cryo-preserving relative positions and orientations of the spin labeling groups; selecting positions and orientations of spin labeling groups with freedom and without technical barriers to making multiple spin labels in an IBC; and enabling use of a solvent that is primarily water for DNP at low temperatures in view of the potentially high water solubilities of spin-labeled IBCs.
    Type: Grant
    Filed: July 17, 2017
    Date of Patent: February 18, 2020
    Assignee: The Trustees of California State University
    Inventors: Yong Ba, Yougang Mao
  • Publication number: 20180044382
    Abstract: Spin-labeled ice binding compounds (IBCs) including ice binding proteins (IBPs) or antifreeze proteins (AFPs) and their analogs may carry paramagnetic centers for dynamic nuclear polarization (DNP), for enhancing nuclear magnetic resonance (NMR) signal intensities. Use of spin-labeled IBCs to perform DNP exploits the IBCs' ability to homogeneously distribute the paramagnetic centers in frozen water solution at low temperature, leading to high DNP efficiency. Other advantages of using spin-labeled IBCs include cryo-protecting biological samples; cryo-preserving relative positions and orientations of the spin labeling groups; selecting positions and orientations of spin labeling groups with freedom and without technical barriers to making multiple spin labels in an IBC; and enabling use of a solvent that is primarily water for DNP at low temperatures in view of the potentially high water solubilities of spin-labeled IBCs.
    Type: Application
    Filed: July 17, 2017
    Publication date: February 15, 2018
    Inventors: Yong BA, Yougang MAO
  • Patent number: 9738686
    Abstract: Spin labeled ice binding compounds (IBCs) including ice binding proteins (IBPs), also called antifreeze proteins (AFPs) and their analogs are exploited to carry the paramagnetic centers for dynamic nuclear polarization (DNP), for enhancing nuclear magnetic resonance (NMR) signal intensities. Use of spin labeled IBCs to perform DNP exploits the IBCs' ability to homogeneously distribute the paramagnetic centers in frozen water solution at low temperature, leading to high DNP efficiency. Other advantages of using spin labeled IBCs include: (1) ability to cryo-protect biological samples; (2) the relative positions and orientations of the spin labeling groups in an IBC may also be cryo-preserved; (3) positions and orientations of spin labeling groups to an IBC can be selected with great freedom and without technical barrier to making multiple spin labels in an IBC; and (4) water solubilities of spin labeled IBCs are potentially high, enabling use of a solvent that is primarily water for DNP at low temperatures.
    Type: Grant
    Filed: February 3, 2016
    Date of Patent: August 22, 2017
    Assignee: The Trustees of the California State University
    Inventors: Yong Ba, Yougang Mao
  • Publication number: 20160207962
    Abstract: Spin labeled ice binding compounds (IBCs) including ice binding proteins (IBPs), also called antifreeze proteins (AFPs) and their analogs are exploited to carry the paramagnetic centers for dynamic nuclear polarization (DNP), for enhancing nuclear magnetic resonance (NMR) signal intensities. Use of spin labeled IBCs to perform DNP exploits the IBCs' ability to homogeneously distribute the paramagnetic centers in frozen water solution at low temperature, leading to high DNP efficiency. Other advantages of using spin labeled IBCs include: (1) ability to cryo-protect biological samples; (2) the relative positions and orientations of the spin labeling groups in an IBC may also be cryo-preserved; (3) positions and orientations of spin labeling groups to an IBC can be selected with great freedom and without technical barrier to making multiple spin labels in an IBC; and (4) water solubilities of spin labeled IBCs are potentially high, enabling use of a solvent that is primarily water for DNP at low temperatures.
    Type: Application
    Filed: February 3, 2016
    Publication date: July 21, 2016
    Inventors: Yong Ba, Yougang Mao