Patents by Inventor Youhao Xu

Youhao Xu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170313636
    Abstract: Disclosed is a process for producing light olefins. In the process for producing light olefins by continuously bringing an alkane feedstock and a catalyst into contact to subject to a dehydrogenation reaction, the reaction pressure P of the dehydrogenation reaction is made 0.6-2 MPa and the volume space velocity H of the dehydrogenation reaction is made 500-1000 h?1. The light olefins production process of the present invention is simple and continuous in operation and has the characteristics of low investment, significant increase in yield of light olefins and high safety.
    Type: Application
    Filed: October 20, 2015
    Publication date: November 2, 2017
    Inventors: Xin WANG, Jingchuan YU, Minggang LI, Jianhong GONG, Baoning ZONG, Youhao XU
  • Publication number: 20170305815
    Abstract: Disclosed is a process for producing light olefins, the process comprising: continuously contacting an oxygen-containing compound raw material with catalyst to have a dehydration reaction so as to prepare low-carbon alkene, the reaction pressure P of the dehydration reaction being 1-2 MPa, and the weight hourly space velocity H of the dehydration reaction being 15-50 h?1. The process of preparing light olefins has a simple and continuous operation process, reduces investment, greatly increases production of light olefins and has a high safety.
    Type: Application
    Filed: October 20, 2015
    Publication date: October 26, 2017
    Inventors: Shouye CUI, Youhao XU, Jingchuan YU, Minggang LI, Baoning ZONG, Jinlian TANG, Xin WANG
  • Patent number: 9611432
    Abstract: The present invention provides a catalytic cracking catalyst, processing method and use thereof. When the catalyst is added into a commercial catalytic cracking unit, it has an initial activity of not higher than 80, preferably not higher than 75, more preferably not higher than 70, a self-balancing time of 0.1-50 h, and an equilibrium activity of 35-60. Said method enables the activity and selectivity of the catalyst in the catalytic cracking unit to be more homogeneous and notably improves the selectivity of the catalytic cracking catalyst, so as to obviously reduce the dry gas and coke yields, to sufficiently use steam and to reduce the energy consumption of the FCC unit.
    Type: Grant
    Filed: June 24, 2010
    Date of Patent: April 4, 2017
    Assignees: CHINA PETROLEUM & CHEMICAL CORPORATION, RESEARCH INSTITUTE OF PETROLEUM PROCESSING, SINOPEC
    Inventors: Youhao Xu, Shouye Cui, Jun Long, Jianhong Gong, Zhijian Da, Jiushun Zhang, Yuxia Zhu, Yibin Luo, Jinlian Tang
  • Patent number: 9580664
    Abstract: The present invention relates to a catalytic conversion process for improving the product distribution, characterized in that a feedstock oil of good quality is contacted with a hot regenerated catalyst having a lower activity in a reactor to carry out a cracking reaction, the reaction product is separated from the spent catalyst to be regenerated, then the reaction product is fed into a separation system, and the spent catalyst to be regenerated is stripped, regenerated and recycled in the process. The isobutene content in the liquefied petroleum gas (LPG) produced by the process is increased by a factor of more than 30%, and the olefin content in the gasoline composition may be increased to more than 30 wt. %. The product distribution is optimized, and the yields of dry gas and coke are decreased, so as to sufficiently utilize the petroleum resources.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: February 28, 2017
    Assignees: CHINA PETROLEUM & CHEMICAL CORPORATION, RESEARCH INSTITUTE OF PETROLEUM PROCESSING, SINOPEC
    Inventors: Youhao Xu, Shouye Cui, Siwei Liu, Nan Jiang, Yinliang Liu
  • Patent number: 8932457
    Abstract: A catalytic conversion process uses a catalytic cracking catalyst having a relatively homogeneous activity containing mainly large pore zeolites in a catalytic conversion reactor. The reaction temperature, residence time of oil vapors and weight ratio of the catalyst/feedstock oil are sufficient to obtain a reaction product containing from about 12 to about 60% by weight of a fluid catalytic cracking gas oil relative to the weight of the feed stock oil and containing a diesel. The reaction temperature ranges from about 420° C. to about 550° C. The residence time of oil vapors ranges from about 0.1 to about 5 seconds. The weight ratio of the catalytic cracking catalyst/feedstock is about 1-about 10.
    Type: Grant
    Filed: October 20, 2010
    Date of Patent: January 13, 2015
    Assignees: China Petroleum & Chemical Corporation, Research Institute of Petroleum Processing, Sinopec
    Inventors: Youhao Xu, Jianhong Gong, Congli Cheng, Shouye Cui, Zhihai Hu, Yun Chen
  • Patent number: 8791038
    Abstract: The object of the present invention is to provide a catalyst regeneration process which can improve catalyst selectivity. A first aspect of the invention is characterized in that a spent catalyst from a reactor is introduced into a first fluidized bed regenerator and contacted with an oxygen-containing gas stream and optional steam to carry out a coke combustion reaction, wherein the resultant mixture of the partially regenerated catalyst and flue gas is introduced into a second fluidized bed regenerator and contacted with steam and an optional oxygen-containing gas stream to carry out a further regeneration reaction, and then the regenerated catalyst is introduced into the reactor. A second aspect of the invention is characterized in that a spent catalyst from a reactor is introduced into a fluidized dense bed regenerator and contacted with an oxygen-containing gas stream and steam to carry out a coke combustion reaction, and then the regenerated catalyst is introduced into the reactor.
    Type: Grant
    Filed: March 30, 2010
    Date of Patent: July 29, 2014
    Assignees: China Petroleum & Chemical Corporation, Research Institute of Petroleum Processing, Sinopec
    Inventors: Youhao Xu, Shouye Cui, Zhigang Zhang, Weimin Lu
  • Patent number: 8696887
    Abstract: A catalytic conversion process which comprises catalytic cracking reaction of a hydrocarbon feedstock contacting with a medium pore size zeolite enriched catalyst in a reactor, characterized in that reaction temperature, weight hourly space velocity and catalyst/feedstock ratio by weight are sufficient to achieve a yield of fluid catalytic cracking gas oil between 12% and 60% by weight of said feedstock, wherein said weight hourly space velocity is between 25 h?1 and 100 h?1, said reaction temperature is between 450° C. and 600° C., and said catalyst/feedstock ratio by weight is between 1 and 30. This invention relates to a catalytic conversion process, especially for heavy feedstock oil to produce higher octane gasoline and an enhanced yield of propylene. More particularly, the invention relates to a process to utilize petroleum oil resources efficiently for decreasing the yield of dry gas and coke significantly.
    Type: Grant
    Filed: August 7, 2008
    Date of Patent: April 15, 2014
    Assignee: China Petroleum & Chemical Corporation
    Inventors: Youhao Xu, Lishun Dai, Longsheng Tian, Shouye Cui, Jianhong Gong, Chaogang Xie, Jiushun Zhang, Jun Long, Zhijian Da, Hong Nie, Jinbiao Guo, Zhigang Zhang
  • Patent number: 8597500
    Abstract: A catalytic conversion process to convert inferior feedstock to high quality fuel oil and propylene is disclosed. Inferior feedstock is introduced into first and second reactor zone, wherein first step and second step reactions occur by contacting with catalytic conversion catalyst. Product vapors include fluid catalytic cracking gas oil (FGO) which is introduced into a hydrotreating unit and/or extraction unit to obtain hydrotreated FGO and/or extracted FGO. Hydrotreated FGO and/or extracted FGO returns to the first reactor zone and/or another catalytic cracking unit to obtain propylene and gasoline. The extracted oil of said FGO is rich in double ring aromatics and the raffinate of said FGO is rich in chain alkane and cycloalkane. More particularly, the invention utilizes petroleum oil resources efficiently for decreasing the yield of dry gas and coke significantly.
    Type: Grant
    Filed: March 13, 2009
    Date of Patent: December 3, 2013
    Assignees: China Petroleum & Chemical Corporation, Research Institute of Petroleum Processing, SINOPEC
    Inventors: Youhao Xu, Lishun Dai, Zhigang Zhang, Shouye Cui, Jianhong Gong, Chaogang Xie, Jun Long, Hong Nie, Zhijian Da, Jiushun Zhang, Tao Liu, Anguo Mao
  • Patent number: 8529754
    Abstract: The present invention relates to a catalytic conversion process for producing more diesel and propylene, comprising contacting the feedstock oil with a catalyst having a relatively homogeneous activity in a reactor, wherein the reaction temperature, weight hourly space velocity and weight ratio of the catalyst/feedstock oil are sufficient to obtain a reaction product containing from 12 to 60% by weight of a fluid catalytic cracking gas oil relative to the weight of the feedstock oil; the fluid catalytic cracking gas oil is fed into the fluid catalytic cracking gas oil treatment device for further processing. Catalytic cracking, hydrogenation, solvent extraction, hydrocracking and process for producing more diesel are organically combined together, and hydrocarbons such as alkanes, alkyl side chains in the feedstock for catalysis are selectively cracked and isomerized.
    Type: Grant
    Filed: September 23, 2010
    Date of Patent: September 10, 2013
    Assignees: China Petroleum & Chemical Corporation, Research Institute of Petroleum Processing, Singopec
    Inventors: Shouye Cui, Youhao Xu, Zhihai Hu, Jianhong Gong, Chaogang Xie, Yun Chen, Zhigang Zhang, Jianwei Dong
  • Publication number: 20130211167
    Abstract: The present invention relates to a catalytic conversion process for improving the product distribution, characterized in that a feedstock oil of good quality is contacted with a hot regenerated catalyst having a lower activity in a reactor to carry out a cracking reaction, the reaction product is separated from the spent catalyst to be regenerated, then the reaction product is fed into a separation system, and the spent catalyst to be regenerated is stripped, regenerated and recycled in the process. The isobutene content in the liquefied petroleum gas (LPG) produced by the process is increased by a factor of more than 30%, and the olefin content in the gasoline composition may be increased to more than 30 wt. %. The product distribution is optimized, and the yields of dry gas and coke are decreased, so as to sufficiently utilize the petroleum resources.
    Type: Application
    Filed: September 23, 2011
    Publication date: August 15, 2013
    Applicant: CHINA PETROLEUM & CHEMICAL CORPORATION
    Inventors: Youhao Xu, Shouye Cui, Siwei Liu, Nan Jiang, Yinliang Liu
  • Publication number: 20130001129
    Abstract: A catalytic conversion process for increasing the cetane number barrel of diesel, in which contacting the feedstock oil with a catalytic cracking catalyst having a relatively homogeneous activity containing mainly the large pore zeolites in a catalytic conversion reactor, wherein the reaction temperature, residence time of oil vapors and weight ratio of the catalyst/feedstock oil are sufficient to obtain a reaction product containing from about 12 to about 60% by weight of a fluid catalytic cracking gas oil relative to the weight of the feedstock oil and containing a diesel; the reaction temperature ranges from about 420° C. to about 550° C.; the residence time of oil vapors ranges from about 0.1 to about 5 seconds; the weight ratio of the catalytic cracking catalyst/feedstock oil is about 1-about 10. The fluid catalytic cracking gas oil is fed into other unit for further treatment or is fed back to the initial catalytic conversion reactor.
    Type: Application
    Filed: October 20, 2010
    Publication date: January 3, 2013
    Applicants: Research Institute of Petroleum Processing, Sinopec, CHINA PETROLEUM & CHEMICAL CORPORATION
    Inventors: Youhao Xu, Jianhong Gong, Congli Cheng, Shouye Cui, Zhihai Hu, Yun Chen
  • Publication number: 20110073523
    Abstract: The present invention relates to a catalytic conversion process for producing more diesel and propylene, comprising contacting the feedstock oil with a catalyst having a relatively homogeneous activity in a reactor, wherein the reaction temperature, weight hourly space velocity and weight ratio of the catalyst/feedstock oil are sufficient to obtain a reaction product containing from 12 to 60% by weight of a fluid catalytic cracking gas oil relative to the weight of the feedstock oil; the fluid catalytic cracking gas oil is fed into the fluid catalytic cracking gas oil treatment device for further processing. Catalytic cracking, hydrogenation, solvent extraction, hydrocracking and process for producing more diesel are organically combined together, and hydrocarbons such as alkanes, alkyl side chains in the feedstocks for catalysis are selectively cracked and isomerized.
    Type: Application
    Filed: September 23, 2010
    Publication date: March 31, 2011
    Applicants: CHINA PETROLEUM & CHEMICAL CORPORATION, Research Institute of Petroleum Processing, Sinopec
    Inventors: Shouye CUI, Youhao XU, Zhihai HU, Jianhong GONG, Chaogang XIE, Yun CHEN, Zhigang ZHANG, Jianwei DONG
  • Publication number: 20110000818
    Abstract: A catalytic conversion process can convert inferior feedstock to high quality fuel oil and propylene. A inferior feedstock is introduced into first and second reactor zone, wherein the feedstock carry out first step and second step reactions by contacting with catalytic conversion catalyst. Product vapors separate from spent catalyst by gas-solid separation. The spent catalyst is stripped, regenerated by burning off coke and then returns to reactor. The product vapors are introduced into separation system to obtain propylene, gasoline, diesel, fluid catalytic cracking gas oil (FGO) and other products. The FGO is introduced into hydrotreating unit and/or extraction unit to obtain hydrotreated FGO and/or extracted FGO. Said hyrotreated FGO and/or extracted FGO return to the first reactor zone and/or another catalytic cracking unit to obtain propylene and gasoline. The extracted oil of said FGO is rich in double ring aromatics which are good chemical materials.
    Type: Application
    Filed: March 13, 2009
    Publication date: January 6, 2011
    Applicants: CHINA PETROLEUM & CHEMICAL CORPORATION, RESEARCH INSTITUTE OF PETROLEUM PROCESSING
    Inventors: Youhao Xu, Lishun Dai, Zhigang Zhang, Shouye Cui, Jianhong Gong, Chaogang Xie, Jun Long, Hong Nie, Zhijian Da, Jiushun Zhang, Tao Liu, Anguo Mao
  • Publication number: 20100326888
    Abstract: The present invention provides a catalytic cracking catalyst, processing method and use thereof. When the catalyst is added into a commercial catalytic cracking unit, it has an initial activity of not higher than 80, preferably not higher than 75, more preferably not higher than 70, a self-balancing time of 0.1-50 h, and an equilibrium activity of 35-60. Said method enables the activity and selectivity of the catalyst in the catalytic cracking unit to be more homogeneous and notably improves the selectivity of the catalytic cracking catalyst, so as to obviously reduce the dry gas and coke yields, to sufficiently use steam and to reduce the energy consumption of the FCC unit.
    Type: Application
    Filed: June 24, 2010
    Publication date: December 30, 2010
    Applicants: CHINA PETROLEUM & CHEMICAL CORPORATION, Research Institute of Petroleum Processing, Sinopec
    Inventors: Youhao XU, Shouye CUI, Jun LONG, Jianhong GONG, Zhijian DA, Jiushun ZHANG, Yuxia ZHU, Yibin LUO, Jinlian TANG
  • Publication number: 20100248942
    Abstract: The object of the present invention is to provide a catalyst regeneration process which can improve catalyst selectivity. A first aspect of the invention is characterized in that a spent catalyst from a reactor is introduced into a first fluidized bed regenerator and contacted with an oxygen-containing gas stream and optional steam to carry out a coke combustion reaction, wherein the resultant mixture of the partially regenerated catalyst and flue gas is introduced into a second fluidized bed regenerator and contacted with steam and an optional oxygen-containing gas stream to carry out a further regeneration reaction, and then the regenerated catalyst is introduced into the reactor. A second aspect of the invention is characterized in that a spent catalyst from a reactor is introduced into a fluidized dense bed regenerator and contacted with an oxygen-containing gas stream and steam to carry out a coke combustion reaction, and then the regenerated catalyst is introduced into the reactor.
    Type: Application
    Filed: March 30, 2010
    Publication date: September 30, 2010
    Applicants: China Petroleum & Chemical Corporation, Research Institute of Petroleum Processing, Sinopec
    Inventors: Youhao Xu, Shouye Cui, Zhigang Zhang, Weimin Lu
  • Publication number: 20100213102
    Abstract: A catalytic conversion process which comprises catalytic cracking reaction of a hydrocarbon feedstock contacting with a medium pore size zeolite enriched catalyst in a reactor, characterized in that reaction temperature, weight hourly space velocity and catalyst/feedstock ratio by weight are sufficient to achieve a yield of fluid catalytic cracking gas oil between 12% and 60% by weight of said feedstock, wherein said weight hourly space velocity is between 25 h?1 and 100 h?1, said reaction temperature is between 450° C. and 600° C., and said catalyst/feedstock ratio by weight is between 1 and 30. This invention relates to a catalytic conversion process, especially for heavy feedstock oil to produce higher octane gasoline and an enhanced yield of propylene. More particularly, the invention relates to a process to utilize petroleum oil resources efficiently for decreasing the yield of dry gas and coke significantly.
    Type: Application
    Filed: August 7, 2008
    Publication date: August 26, 2010
    Inventors: Youhao Xu, Lishun Dai, Longsheng Tian, Shouye Cui, Jianhong Gong, Chaogang Xie, Jiushun Zhang, Jun Long, Zhijian Da, Hong Nie, Jinbiao Guo, Zhigang Zhang
  • Patent number: 7678342
    Abstract: A riser reactor for fluidized catalytic conversion process consists of a prelift zone, a first reaction zone, a second reaction zone with enlarged diameter, an outlet zone with reduced diameter along coaxial direction form bottom to top, and the end of the outlet zone connects to a horizontal tube. The reactor is used for adjusting different operating conditions to process single or plural feedstock in each different reaction zone for producing the desired product.
    Type: Grant
    Filed: April 20, 2000
    Date of Patent: March 16, 2010
    Assignees: China Petrochemical Corporation, Research Institute of Petroleum Processing, SINOPEC
    Inventors: Youhao Xu, Bende Yu, Zhigang Zhang, Jun Long, Fukang Jlang
  • Patent number: 6495028
    Abstract: A process for catalytic conversion of hydrocarbon feedstock to produce isobutane and isoparaffin-enriched gasoline which comprises two different reactions, the preheated feedstock is contacted with hot regenerated catalyst in the lower part of a reactor with the result that catalytic cracking reaction takes place, and the mixture of vapors and the coke deposited catalyst are up-flowed and enter into a suitable reaction environment with the result that isomerization and hydrogen transfer reaction take place. The produced LPG has an isobutane content of about 20 wt % to about 40 wt % and the produced gasoline contains isoparaffin content of about 30 wt % to about 45 wt % and olefin content of less than 30 wt %. RON and MON of the gasoline are 90˜93 and 80˜84 respectively.
    Type: Grant
    Filed: April 21, 2000
    Date of Patent: December 17, 2002
    Assignees: China Petroleum Corporation, Research Institute of Petroleum Processing
    Inventors: Youhao Xu, Jiushun Zhang, Yinan Yang, Jun Long, Xieqing Wang, Zaiting Li, Raichi Zhang