Patents by Inventor Youko Yoshioka

Youko Yoshioka has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10837547
    Abstract: An oil pressure control device has a mechanical oil pump (O/P) driven by a motor/generator (MG), an electric oil pump (M/O/P) driven by a sub motor (S/M) and a line pressure regulating valve (104). In a case where a state is changed from a state in which the motor/generator (MG) is stopped and the electric oil pump (M/O/P) is driven to a state in which the motor/generator (MG) is started and the electric oil pump (M/O/P) is stopped, when a total flow amount of a working fluid discharge flow amount of the mechanical oil pump (O/P) and a working fluid discharge flow amount of the electric oil pump (M/O/P) is equal to or greater than a pressure regulation limit flow amount of the pressure regulating valve (104), the working fluid discharge flow amount of the electric oil pump (M/O/P) is decreased.
    Type: Grant
    Filed: March 9, 2016
    Date of Patent: November 17, 2020
    Assignee: JATCO LTD
    Inventors: Yutaka Shimizu, Shusaku Katakura, Yusuke Ota, Tomoyuki Koike, Yukiyoshi Inuta, Youko Yoshioka
  • Patent number: 10697452
    Abstract: An oil pressure control device for a vehicle is configured such that, when switching from an oil pressure supply by means of a mechanical oil pump driven by a motor/generator to an oil pressure supply by means of an electric oil pump driven by a sub-motor, a supply ratio of oil supplied from the mechanical oil pump and a supply ratio of oil supplied from the electric oil pump, are adjusted based on an oil pressure difference between a first oil pressure and a second oil pressure, via first and second flapper valves. When the first oil pressure becomes less than or equal to a pump drive threshold, an increase in the second oil pressure is initiated, and the first oil pressure and the second oil pressure are made to match at a predetermined equilibrium oil pressure higher than a required line pressure.
    Type: Grant
    Filed: March 9, 2016
    Date of Patent: June 30, 2020
    Assignee: JATCO LTD
    Inventors: Yutaka Shimizu, Shusaku Katakura, Yusuke Ota, Youko Yoshioka, Yukiyoshi Inuta, Tomoyuki Koike
  • Patent number: 10576965
    Abstract: A vehicle is provided with a mechanical oil pump (O/P) that is driven by a motor/generator (MG), an electric oil pump (M/O/P) that is driven by a sub-motor (S/M) and a second clutch (CL2) that transmits the drive force of the motor/generator (MG) to left and right drive wheels (LT, RT). When an accelerator pedal is depressed while a brake pedal is still depressed, an integrated controller (10) drives the electric oil pump (M/O/P) before the brake pedal is released, and oil pressure supplied to the second clutch (CL2) is increased.
    Type: Grant
    Filed: March 9, 2016
    Date of Patent: March 3, 2020
    Assignee: JATCO LTD
    Inventors: Shusaku Katakura, Yutaka Shimizu, Tomoyuki Koike, Yukiyoshi Inuta, Youko Yoshioka
  • Patent number: 10309526
    Abstract: A hydraulic control device includes: a mechanical oil pump (O/P) that is driven by a motor/generator (M/G) and that generates a first hydraulic pressure (P1); an electric oil pump (M/O/P) that is driven by a sub-motor (S/M) and that generates a second hydraulic pressure (P2); and a controller (10). When a demanded drive force from a driver is generated while in a low-vehicle-speed region which is lower than a first vehicle speed (V1) at which the output of the mechanical oil pump (O/P) becomes unstable, the controller (10) controls the electric oil pump (M/O/P) such that the second hydraulic pressure (P2) becomes larger than a compensative hydraulic pressure (P?) found by subtracting the first hydraulic pressure (P1) from a necessary hydraulic pressure (Pne) determined in accordance with the demanded drive force.
    Type: Grant
    Filed: March 9, 2016
    Date of Patent: June 4, 2019
    Assignee: JATCO LTD
    Inventors: Shusaku Katakura, Yutaka Shimizu, Youko Yoshioka, Yukiyoshi Inuta, Tomoyuki Koike
  • Patent number: 10118494
    Abstract: A vehicle control method is provided for controlling a vehicle having a friction clutch configured to switch between engagement and disengagement between a motor/generator and a drive wheel. The vehicle control method includes maintaining a friction clutch disengaged with slack eliminated in a stroke while the vehicle is stopped, reducing a motor rotational speed using a predetermined rotational speed as a target motor rotational speed in response a request to stop a motor/generator upon determining the motor rotational speed of the motor/generator is greater than the predetermined rotational speed, and when the motor rotational speed has reached the predetermined rotational speed, reducing the motor rotational speed toward zero while limiting the torque of the motor/generator.
    Type: Grant
    Filed: June 15, 2015
    Date of Patent: November 6, 2018
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Yuuki Ozawa, Youko Yoshioka, Takao Andou
  • Patent number: 10099677
    Abstract: A vehicle control device is provided with a friction clutch for engaging and disengaging a motor/generator and a drive wheel, a mechanical oil pump driven by the motor/generator to supply hydraulic oil pressure to the friction clutch, an electric oil pump driven by an electric motor to supply hydraulic oil pressure to the friction clutch, and a control unit. The control unit stops a motor/generator when a vehicle stops; maintains a release of a friction clutch when slack in the stroke is eliminated by the hydraulic oil pressure from the electric oil pump; raises a rotational speed of the motor/generator toward a target rotational speed upon a request to cancel stoppage of the motor/generator; and restricts the torque to be less than the motor generator torque at which the target rotational rate can be maintained when the rotational rate of the motor/generator is raised toward the target rotational rate.
    Type: Grant
    Filed: June 15, 2015
    Date of Patent: October 16, 2018
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Youko Yoshioka, Yuuki Ozawa, Takao Andou
  • Publication number: 20180141535
    Abstract: A vehicle control device is provided with a friction clutch for engaging and disengaging a motor/generator and a drive wheel, a mechanical oil pump driven by the motor/generator to supply hydraulic oil pressure to the friction clutch, an electric oil pump driven by an electric motor to supply hydraulic oil pressure to the friction clutch, and a control unit. The control unit stops a motor/generator when a vehicle stops; maintains a release of a friction clutch when slack in the stroke is eliminated by the hydraulic oil pressure from the electric oil pump; raises a rotational speed of the motor/generator toward a target rotational speed upon a request to cancel stoppage of the motor/generator; and restricts the torque to be less than the motor generator torque at which the target rotational rate can be maintained when the rotational rate of the motor/generator is raised toward the target rotational rate.
    Type: Application
    Filed: June 15, 2015
    Publication date: May 24, 2018
    Inventors: Youko YOSHIOKA, Yuuki OZAWA, Takao ANDOU
  • Publication number: 20180119800
    Abstract: An oil pressure control device has a mechanical oil pump (O/P) driven by a motor/generator (MG), an electric oil pump (M/O/P) driven by a sub motor (S/M) and a line pressure regulating valve (104). In a case where a state is changed from a state in which the motor/generator (MG) is stopped and the electric oil pump (M/O/P) is driven to a state in which the motor/generator (MG) is started and the electric oil pump (M/O/P) is stopped, when a total flow amount of a working fluid discharge flow amount of the mechanical oil pump (O/P) and a working fluid discharge flow amount of the electric oil pump (M/O/P) is equal to or greater than a pressure regulation limit flow amount of the pressure regulating valve (104), the working fluid discharge flow amount of the electric oil pump (M/O/P) is decreased.
    Type: Application
    Filed: March 9, 2016
    Publication date: May 3, 2018
    Applicant: JATCO Ltd
    Inventors: Yutaka SHIMIZU, Shusaku KATAKURA, Yusuke OTA, Tomoyuki KOIKE, Yukiyoshi INUTA, Youko YOSHIOKA
  • Publication number: 20180118035
    Abstract: A vehicle control method is provided for controlling a vehicle having a friction clutch configured to switch between engagement and disengagement between a motor/generator and a drive wheel. The vehicle control method includes maintaining a friction clutch disengaged with slack eliminated in a stroke while the vehicle is stopped, reducing a motor rotational speed using a predetermined rotational speed as a target motor rotational speed in response a request to stop a motor/generator upon determining the motor rotational speed of the motor/generator is greater than the predetermined rotational speed, and when the motor rotational speed has reached the predetermined rotational speed, reducing the motor rotational speed toward zero while limiting the torque of the motor/generator.
    Type: Application
    Filed: June 15, 2015
    Publication date: May 3, 2018
    Inventors: Yuuki OZAWA, Youko YOSHIOKA, Takao ANDOU
  • Publication number: 20180105162
    Abstract: A vehicle is provided with a mechanical oil pump (O/P) that is driven by a motor/generator (MG), an electric oil pump (M/O/P) that is driven by a sub-motor (S/M) and a second clutch (CL2) that transmits the drive force of the motor/generator (MG) to left and right drive wheels (LT, RT). When an accelerator pedal is depressed while a brake pedal is still depressed, an integrated controller (10) drives the electric oil pump (M/O/P) before the brake pedal is released, and oil pressure supplied to the second clutch (CL2) is increased.
    Type: Application
    Filed: March 9, 2016
    Publication date: April 19, 2018
    Applicant: JATCO Ltd
    Inventors: Shusaku KATAKURA, Yutaka SHIMIZU, Tomoyuki KOIKE, Yukiyoshi INUTA, Youko YOSHIOKA
  • Publication number: 20180106363
    Abstract: A hydraulic control device includes: a mechanical oil pump (O/P) that is driven by a motor/generator (M/G) and that generates a first hydraulic pressure (P1); an electric oil pump (M/O/P) that is driven by a sub-motor (S/M) and that generates a second hydraulic pressure (P2); and a controller (10). When a demanded drive force from a driver is generated while in a low-vehicle-speed region which is lower than a first vehicle speed (V1) at which the output of the mechanical oil pump (O/P) becomes unstable, the controller (10) controls the electric oil pump (M/O/P) such that the second hydraulic pressure (P2) becomes larger than a compensative hydraulic pressure (P?) found by subtracting the first hydraulic pressure (P1) from a necessary hydraulic pressure (Pne) determined in accordance with the demanded drive force.
    Type: Application
    Filed: March 9, 2016
    Publication date: April 19, 2018
    Applicant: JATCO Ltd
    Inventors: Shusaku KATAKURA, Yutaka SHIMIZU, Youko YOSHIOKA, Yukiyoshi INUTA, Tomoyuki KOIKE
  • Publication number: 20180100578
    Abstract: An oil pressure control device for a vehicle is configured such that, when switching from an oil pressure supply by means of a mechanical oil pump driven by a motor/generator to an oil pressure supply by means of an electric oil pump driven by a sub-motor, a supply ratio of oil supplied from the mechanical oil pump and a supply ratio of oil supplied from the electric oil pump, are adjusted based on an oil pressure difference between a first oil pressure and a second oil pressure, via first and second flapper valves. When the first oil pressure becomes less than or equal to a pump drive threshold, an increase in the second oil pressure is initiated, and the first oil pressure and the second oil pressure are made to match at a predetermined equilibrium oil pressure higher than a required line pressure.
    Type: Application
    Filed: March 9, 2016
    Publication date: April 12, 2018
    Applicant: JATCO Ltd
    Inventors: Yutaka SHIMIZU, Shusaku KATAKURA, Yusuke OTA, Youko YOSHIOKA, Yukiyoshi INUTA, Tomoyuki KOIKE
  • Patent number: 8931445
    Abstract: Provided is an internal combustion engine including two intake valves for each cylinder, the internal combustion engine including: a fixed cam for driving one of the two intake valves with a lift characteristic having a valve opening timing close to a top dead center; a variable valve actuation mechanism capable of changing, in accordance with an engine running condition, lift characteristics between a low-lift characteristic having an event angle and a lift amount each being smaller than an event angle and a lift amount of the fixed cam, and a high-lift characteristic having the event angle and the lift amount each being larger than the event angle and the lift amount of the fixed cam; and a variable cam for driving another of the two intake valves, the variable cam including the variable valve actuation mechanism, in which the variable valve actuation mechanism is configured to set the lift characteristic of the variable cam so as to obtain a valve opening timing on a retard side relative to the valve openi
    Type: Grant
    Filed: January 30, 2012
    Date of Patent: January 13, 2015
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Takayuki Hamamoto, Kensuke Tominaga, Youko Yoshioka
  • Publication number: 20130306012
    Abstract: Provided is an internal combustion engine including two intake valves for each cylinder, the internal combustion engine including: a fixed cam for driving one of the two intake valves with a lift characteristic having a valve opening timing close to a top dead center; a variable valve actuation mechanism capable of changing, in accordance with an engine running condition, lift characteristics between a low-lift characteristic having an event angle and a lift amount each being smaller than an event angle and a lift amount of the fixed cam, and a high-lift characteristic having the event angle and the lift amount each being larger than the event angle and the lift amount of the fixed cam; and a variable cam for driving another of the two intake valves, the variable cam including the variable valve actuation mechanism, in which the variable valve actuation mechanism is configured to set the lift characteristic of the variable cam so as to obtain a valve opening timing on a retard side relative to the valve openi
    Type: Application
    Filed: January 30, 2012
    Publication date: November 21, 2013
    Inventors: Takayuki Hamamoto, Kensuke Tominaga, Youko Yoshioka
  • Patent number: 7356403
    Abstract: A control apparatus for an internal combustion engine with an exhaust recirculation system includes an acceleration request sensing section to sense a driver's acceleration request; and an engine operating condition sensing section to sense a current engine operation condition at the time of detection of the driver's acceleration request, to determine a margin from the engine operating condition at the time of detection of the driver's acceleration request, to a fuel economy deterioration region on a higher load side. A controlling section controls the EGR quantity, such as EGR rate, of the exhaust recirculation system in accordance with the margin.
    Type: Grant
    Filed: January 31, 2005
    Date of Patent: April 8, 2008
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Youko Yoshioka, Takeshi Sato
  • Publication number: 20050171670
    Abstract: A control apparatus for an internal combustion engine with an exhaust recirculation system includes an acceleration request sensing section to sense a driver's acceleration request; and an engine operating condition sensing section to sense a current engine operation condition at the time of detection of the driver's acceleration request, to determine a margin from the engine operating condition at the time of detection of the driver's acceleration request, to a fuel economy deterioration region on a higher load side. A controlling section controls the EGR quantity, such as EGR rate, of the exhaust recirculation system in accordance with the margin.
    Type: Application
    Filed: January 31, 2005
    Publication date: August 4, 2005
    Inventors: Youko Yoshioka, Takeshi Sato