Patents by Inventor Youliang Shi

Youliang Shi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10450519
    Abstract: A method for hydrofining of middle distillates of Fischer-Tropsch synthetic full-range distillates, the method including: 1) separating middle distillates of Fischer-Tropsch synthetic full-range distillates to yield light distillates, heavy distillates and intermediate distillates; 2) metering the light distillates, the heavy distillates and the intermediate distillates; providing a hydrogenation reactor filled with a hydrofining catalyst and including a first feed inlet, a second feed inlet and a third feed inlet from the top down; mixing hydrogen and the light distillates, the heavy distillates and the intermediate distillates, respectively, and introducing resulting mixtures to the hydrogenation reactor via the first feed inlet, the second feed inlet and the third feed inlet, respectively; and 3) introducing products from 2) to a gas-liquid separator to yield hydrogen and liquid products, returning the hydrogen to the hydrogenation reactor, and introducing the liquid products to a fractionating column for
    Type: Grant
    Filed: August 31, 2017
    Date of Patent: October 22, 2019
    Assignee: WUHAN KAIDI ENGINEERING TECHNOLOGY RESEARCH INSTITUTE CO., LTD.
    Inventors: Weiguang Yang, Youliang Shi
  • Publication number: 20190193064
    Abstract: A catalyst, including silica and iron. The silica is in the form of a mesoporous spherical particle. The iron is in the form of nanoparticles evenly distributed and encapsulated in the silica. The particle size of the silica is between 140 and 160 nm, and the silica includes pores between 2 and 9 nm in diameter.
    Type: Application
    Filed: February 27, 2019
    Publication date: June 27, 2019
    Inventors: Li GUO, Jiangang CHEN, Yanfeng ZHANG, Jiaqi JIN, Youliang SHI, Shenke ZHENG, Yan GONG
  • Patent number: 10286389
    Abstract: A carrier for selectively synthesizing kerosene fraction from syngas, the carrier including the following components in parts by weight: 5-50 parts of mesoporous zirconia (ZrO2), 10-55 parts of a silicoaluminophosphate (SAPO) molecular sieve, 5-50 parts of modified mesoporous molecular sieve Al-SBA-16, 1-3 parts of sesbania gum powder, and 10-70 parts of alumina A catalyst includes a soluble cobalt salt and the aforesaid carrier. The soluble cobalt salt is loaded on the surface of the carrier.
    Type: Grant
    Filed: December 12, 2017
    Date of Patent: May 14, 2019
    Assignee: WUHAN KAIDI ENGINEERING TECHNOLOGY RESEARCH INSTITUTE CO., LTD.
    Inventors: Li Xu, Wanwan Wang, Youliang Shi
  • Patent number: 10227537
    Abstract: A method of hydrotreatment of Fischer-Tropsch synthesis products, the method including: 1) mixing Fischer-Tropsch wax with a sulfur-containing liquid additive, contacting a resulting mixture with hydrogen, feeding a hydrogen-containing mixture to a first reaction region, feeding an effluent from the first reaction region to a second reaction region, and carrying out hydrocracking reaction; 2) feeding a hydrocracking product from the second reaction region and Fischer-Tropsch naphtha and diesel fuel to a third reaction region, carrying out hydrofining reaction; feeding an effluent from the hydrofining reaction to a fourth reaction region, and carrying out hydroisomerizing pour-point depression reaction; and 3) feeding an effluent from the fourth reaction region to a gas-liquid separation system to yield hydrogen-rich gas and liquid products, recycling the hydrogen-rich gas, and feeding the liquid products to a distilling system.
    Type: Grant
    Filed: August 10, 2017
    Date of Patent: March 12, 2019
    Assignee: WUHAN KAIDI ENGINEERING TECHNOLOGY RESEARCH INSTITUTE CO., LTD.
    Inventors: Bo Lai, Youliang Shi, Li Xu
  • Publication number: 20180111117
    Abstract: A carrier for selectively synthesizing kerosene fraction from syngas, the carrier including the following components in parts by weight: 5-50 parts of mesoporous zirconia (ZrO2), 10-55 parts of a silicoaluminophosphate (SAPO) molecular sieve, 5-50 parts of modified mesoporous molecular sieve Al-SBA-16, 1-3 parts of sesbania gum powder, and 10-70 parts of alumina A catalyst includes a soluble cobalt salt and the aforesaid carrier. The soluble cobalt salt is loaded on the surface of the carrier.
    Type: Application
    Filed: December 12, 2017
    Publication date: April 26, 2018
    Inventors: Li XU, Wanwan WANG, Youliang SHI
  • Publication number: 20170362517
    Abstract: A method for hydrofining of middle distillates of Fischer-Tropsch synthetic full-range distillates, the method including: 1) separating middle distillates of Fischer-Tropsch synthetic full-range distillates to yield light distillates, heavy distillates and intermediate distillates; 2) metering the light distillates, the heavy distillates and the intermediate distillates; providing a hydrogenation reactor filled with a hydrofining catalyst and including a first feed inlet, a second feed inlet and a third feed inlet from the top down; mixing hydrogen and the light distillates, the heavy distillates and the intermediate distillates, respectively, and introducing resulting mixtures to the hydrogenation reactor via the first feed inlet, the second feed inlet and the third feed inlet, respectively; and 3) introducing products from 2) to a gas-liquid separator to yield hydrogen and liquid products, returning the hydrogen to the hydrogenation reactor, and introducing the liquid products to a fractionating column for
    Type: Application
    Filed: August 31, 2017
    Publication date: December 21, 2017
    Inventors: Weiguang YANG, Youliang SHI
  • Publication number: 20170335208
    Abstract: A method of hydrotreatment of Fischer-Tropsch synthesis products, the method including: 1) mixing Fischer-Tropsch wax with a sulfur-containing liquid crystal, contacting a resulting mixture with hydrogen, feeding a hydrogen-containing mixture to a first reaction region, feeding an effluent from the first reaction region to a second reaction region, and carrying out hydrocracking reaction; 2) feeding a hydrocracking product from the second reaction region and Fischer-Tropsch naphtha and diesel fuel to a third reaction region, carrying out hydrofining reaction; feeding an effluent from the hydrofining reaction to a fourth reaction region, and carrying out hydroisomerizing pour-point depression reaction; and 3) feeding an effluent from the fourth reaction region to a gas-liquid separation system to yield hydrogen-rich gas and liquid products, recycling the hydrogen-rich gas, and feeding the liquid products to a distilling system.
    Type: Application
    Filed: August 10, 2017
    Publication date: November 23, 2017
    Inventors: Bo LAI, Youliang SHI, Li XU
  • Patent number: 9017545
    Abstract: Disclosed is a process for hydrotreating inferior naphtha fraction, comprising: (1) warming a recycle oil in a heating device; (2) mixing the inferior naphtha fraction with the recycle oil before and/or after the heating device; and (3) feeding the mixture of the inferior naphtha fraction and the recycle oil into a separating unit, wherein the gas-liquid separation is realized at least to obtain a gas phase and a liquid phase, wherein the gas phase comprises gasified inferior naphtha, wherein the gas phase enters a hydrotreating reactor to undergo hydrotreating, and wherein part of the liquid phase circulates to the heating device as the recycle oil; wherein warming of the recycle oil is controlled to ensure the temperature of gas phase from the separator at least reaches the inlet temperature of the hydrotreating reactor. Comparing with the prior art, the inventive process effectively solves the coking problem of the hydrogenating unit for inferior naphtha fraction.
    Type: Grant
    Filed: October 26, 2012
    Date of Patent: April 28, 2015
    Assignees: China Petroleum & Chemical Corporation, Fushun Research Institute of Petroleum and Petrochemicals, Sinopec
    Inventors: Ying Zhang, Baozhong Li, Ronghui Zeng, Youliang Shi
  • Patent number: 6726833
    Abstract: The present invention discloses a process for hydroconverting a heavy hydrocarbon chargestock, wherein said chargestock oil is first contacted with a highly active homogeneous hydrogenation catalyst to effect the hydrogenation reaction so that macromolecular radicals of the residue (the precursor of coke) form as less as possible, thereby decreasing the output of coke in the hydrocracking of the residue; when the reaction proceeds to a certain extent, a solid powder is added to adsorb the macromolecular radicals of the residue formed during the reaction and lower their reaction activity, thereby preventing them from further condensing to coke and/or depositing due to polymerization. The synergetic action of the two sorts of substances makes it possible to produce substantively no coke or less coke during the hydrogenation of residue in a suspension bed and prolong the operation lifetime of the unit.
    Type: Grant
    Filed: January 4, 2002
    Date of Patent: April 27, 2004
    Assignees: China Petroleum & Chemical Corporation, Fushun Research Institute of Petroleum & Petrochemicals, SINOPEC Corporation
    Inventors: Baoping Han, Lijing Jiang, Youliang Shi, Pai Peng, Mei Jin, Zhaoming Han
  • Publication number: 20030006167
    Abstract: The present invention discloses a process for hydroconverting a heavy hydrocarbon chargestock, wherein said chargestock oil is first contacted with a highly active homogeneous hydrogenation catalyst to effect the hydrogenation reaction so that macromolecular radicals of the residue (the precursor of coke) form as less as possible, thereby decreasing the output of coke in the hydrocracking of the residue; when the reaction proceeds to a certain extent, a solid powder is added to adsorb the macromolecular radicals of the residue formed during the reaction and lower their reaction activity, thereby preventing them from further condensing to coke and/or depositing due to polymerization. The synergetic action of the two sorts of substances makes it possible to produce substantively no coke or less coke during the hydrogenation of residue in a suspension bed and prolong the operation lifetime of the unit.
    Type: Application
    Filed: January 4, 2002
    Publication date: January 9, 2003
    Inventors: Baoping Han, Lijing Jiang, Youliang Shi, Pai Peng, Mei Jin, Zhaoming Han