Patents by Inventor Young Kun Oh

Young Kun Oh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160247607
    Abstract: Disclosed herein are an apparatus for joining second-generation ReBCO high temperature superconducting wires and a joining method using the same which are capable of fabricating sufficiently long superconducting wires of a persistent current mode having almost zero resistance at the joint of the wires compared to the conventional non-superconducting joint by press-joining the ReBCO high temperature superconductor layers placed to make a direct surface contact with each other through melting diffusion or solid-state diffusion of a tiny portion of a material of the superconductor layers without a medium such as solder or a filler.
    Type: Application
    Filed: August 13, 2014
    Publication date: August 25, 2016
    Inventors: Young-Kun OH, Myung-Whon LEE, Hee-Sung AHN
  • Publication number: 20150357089
    Abstract: Disclosed is a method of splicing ReBCO high temperature superconductors (HTSs), which ensures excellent superconductivity after splicing. The method of splicing 2G ReBCO HTSs allows a superconductors-spliced assembly to exhibit excellent superconductivity by direct contact of high temperature superconducting layers of two strands of 2G ReBCO HTSs and solid state atoms diffusion pressurized splicing there between at a ReBCO below peritectic reaction temperature in a vacuum, and enables loss of superconductivity caused by loss of oxygen due to transport and out-diffusion of oxygen to atoms during splicing to be recovered through oxygenation annealing.
    Type: Application
    Filed: February 3, 2014
    Publication date: December 10, 2015
    Applicant: K. JOINS. INC.
    Inventors: Young-Kun OH, Hee-Sung ANN, Myung-Whon LEE
  • Patent number: 8993485
    Abstract: Disclosed is a splicing method of two second-generation ReBCO high temperature superconductor coated conductors (2G ReBCO HTS CCs), in which, with stabilizing layers removed from the two strands of 2G ReBCO HTS CCs through chemical wet etching or plasma dry etching, surfaces of the two high temperature superconducting layers are brought into direct contact with each other and heated in a splicing furnace in a vacuum for micro-melting portions of the surfaces of the high temperature superconducting layers to permit inter-diffusion of ReBCO atoms such that the surfaces of the two superconducting layers can be spliced to each other and oxygenation annealing for recovery of superconductivity which was lost during splicing.
    Type: Grant
    Filed: October 29, 2012
    Date of Patent: March 31, 2015
    Assignee: K.Joins
    Inventors: Young-Kun Oh, Hee-Sung Ann, Myung-Whon Lee, Hai-Gun Lee
  • Publication number: 20140296078
    Abstract: Disclosed is a splicing method of two second-generation ReBCO high temperature superconductor coated conductors (2G ReBCO HTS CCs), in which, with stabilizing layers removed from the two strands of 2G ReBCO HTS CCs through chemical wet etching or plasma dry etching, surfaces of the two high temperature superconducting layers are brought into direct contact with each other and heated in a splicing furnace in a vacuum for micro-melting portions of the surfaces of the high temperature superconducting layers to permit inter-diffusion of ReBCO atoms such that the surfaces of the two superconducting layers can be spliced to each other and oxygenation annealing for recovery of superconductivity which was lost during splicing.
    Type: Application
    Filed: October 29, 2012
    Publication date: October 2, 2014
    Inventors: Young-Kun Oh, Hee-Sung Ann, Myung-Whon Lee, Hai-Gun Lee
  • Publication number: 20080223521
    Abstract: A plasma source coil includes a bushing arranged at a center part, and a plurality of unit coils arranged in the form of a concentric circle from a circumference of the bushing on the bases of the bushing. One end of each unit coil and one end of the bushing are commonly connected to a power-supply terminal, and the other end of each unit coil and the other end of the bushing are commonly connected to a ground terminal.
    Type: Application
    Filed: March 29, 2005
    Publication date: September 18, 2008
    Inventors: Nam Hun Kim, Do Hyung Lee, Young Kun Oh