Patents by Inventor Young Min Lim

Young Min Lim has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200358103
    Abstract: A secondary battery includes a positive electrode, a negative electrode, a separator disposed between the positive electrode and the negative electrode, and an electrolyte solution, wherein the positive electrode includes a current collector and a positive electrode active material layer disposed on the current collector, the positive electrode active material layer includes a positive electrode active material and carbon nanotubes, and the electrolyte solution includes a non-aqueous solvent, a lithium salt, and tetravinylsilane.
    Type: Application
    Filed: February 22, 2019
    Publication date: November 12, 2020
    Applicant: LG Chem, Ltd.
    Inventors: Joo Yul Baek, Young Min Lim, Jun Muk Lim, Sang Hoon Choy, Chul Haeng Lee
  • Publication number: 20200251777
    Abstract: A non-aqueous electrolyte solution for a lithium secondary battery, and a lithium secondary battery including the same are disclosed herein. In some embodiments, a non-aqueous electrolyte solution includes a lithium salt, a non-aqueous solvent including a carbonate-based solvent and propyl propionate, and a compound represented by Formula 1. In some embodiments, the carbonate-based solvent is ethylene carbonate.
    Type: Application
    Filed: November 22, 2018
    Publication date: August 6, 2020
    Applicant: LG Chem, Ltd.
    Inventors: Young Min Lim, Kyung Mi Lee, Chul Haeng Lee
  • Publication number: 20200243898
    Abstract: A lithium secondary battery is disclosed herein. In some embodiments, a lithium secondary battery which includes a positive electrode, a negative electrode, a separator disposed between the positive electrode and the negative electrode, and a non-aqueous electrolyte solution, wherein the positive electrode includes a positive electrode active material represented by Formula 1, and the non-aqueous electrolyte solution includes a non-aqueous organic solvent, a first lithium salt, lithium bis(fluorosulfonyl)imide as a second lithium salt, and an additive, wherein a molar ratio of the first lithium salt to the second lithium salt is in a range of 1:0.01 to 1:1, and the additive is a mixed additive which includes fluorobenzene, tetravinylsilane, and tertiary butylbenzene in a weight ratio of 1:0.05:0.1 to 1:1:1.5. Li(NiaCobMnc)O2??[Formula 1] (in Formula 1, 0.65<a?0.9, 0.05?b<0.2, 0.05?c<0.2, and a+b+c=1.
    Type: Application
    Filed: January 25, 2019
    Publication date: July 30, 2020
    Applicant: LG Chem, Ltd.
    Inventors: Young Min Lim, Chul Haeng Lee
  • Publication number: 20200220216
    Abstract: A non-aqueous electrolyte solution for a lithium secondary battery and a lithium secondary battery including the same are disclosed herein. In an embodiment, a non-aqueous electrolyte solution for a lithium secondary battery includes a lithium salt, an organic solvent, and an additive, wherein the additive is a mixed additive which includes lithium difluorophosphate, fluorobenzene, tetravinylsilane, and a compound containing one sulfonate group or sulfate group in a weight ratio of 1:2:0.05:0.5 to 1:8:0.3:2.
    Type: Application
    Filed: November 13, 2018
    Publication date: July 9, 2020
    Applicant: LG Chem, Ltd.
    Inventors: Ha Eun Kim, Young Min Lim, Gwang Yeon Kim, Chul Haeng Lee
  • Patent number: 10700381
    Abstract: The present invention relates to a non-aqueous electrolyte solution for a lithium secondary battery and a lithium secondary battery including the same, and particularly, to a non-aqueous electrolyte solution for a lithium secondary battery which includes an ionizable lithium salt, an organic solvent, and an additive, wherein the additive includes tetravinylsilane, lithium difluorophosphate, and 1,3-propylene sulfate in a weight ratio of 1:3 to 20:3 to 20, and a total amount of the additive is in a range of 1 wt % to 4 wt % based on a total weight of the non-aqueous electrolyte solution for a lithium secondary battery, and a lithium secondary battery including the same.
    Type: Grant
    Filed: January 18, 2018
    Date of Patent: June 30, 2020
    Assignee: LG Chem, Ltd.
    Inventors: Ha Eun Kim, Young Min Lim, Gwang Yeon Kim, Chul Haeng Lee
  • Patent number: 10629956
    Abstract: The present invention relates to a method of preparing a lithium secondary battery which includes preparing a lithium secondary battery, which includes an electrode assembly including a positive electrode, a separator, and a negative electrode, a non-aqueous electrolyte solution, in which the electrode assembly is impregnated, and a battery case accommodating the electrode assembly and the non-aqueous electrolyte solution; performing formation on the lithium secondary battery by charging and discharging the lithium secondary battery; and degassing, wherein the positive electrode includes a positive electrode active material and carbon nanotubes as a conductive agent, the non-aqueous electrolyte solution includes a lithium salt, an organic solvent, and monofluorobenzene as an additive, and the performing of the formation is performed by charging to a state of charge (SOC) of 65% to 80% while applying a pressure of 0.5 kgf/cm2 to 5 kgf/cm2 at 60° C. to 80° C.
    Type: Grant
    Filed: January 22, 2018
    Date of Patent: April 21, 2020
    Assignee: LG Chem, Ltd.
    Inventors: Jung Min Lee, Young Min Lim, Chul Haeng Lee, Yu Ha An, Yi Jin Jung
  • Patent number: 10615450
    Abstract: The present invention provides an electrolyte solution for a lithium secondary battery including an additive, which may prevent a chemical reaction between the electrolyte solution and an electrode by forming a stable solid electrolyte interface (SEI) and a protection layer on the surface of the electrode, and a lithium secondary battery in which life characteristics and high-temperature stability are improved by including the same.
    Type: Grant
    Filed: October 13, 2017
    Date of Patent: April 7, 2020
    Assignee: LG Chem, Ltd.
    Inventors: Kyoung Ho Ahn, Yu Ra Jeong, Chul Haeng Lee, Young Min Lim, Jeong Woo Oh, Jung Hoon Lee
  • Publication number: 20200052331
    Abstract: An electrolyte additive composition of the present invention may improve high-rate charge and discharge characteristics and high-temperature storage and life characteristics of a lithium secondary battery when the electrolyte additive composition is used in an electrolyte while including a novel borate-based lithium compound as well as a non-lithiated additive.
    Type: Application
    Filed: March 16, 2018
    Publication date: February 13, 2020
    Applicant: LG Chem, Ltd.
    Inventors: Young Min Lim, Chul Haeng Lee, Ha Eun Kim
  • Patent number: 10541447
    Abstract: The present invention relates to a non-aqueous electrolyte solution for a lithium secondary battery and a lithium secondary battery including the same, and particularly, to a non-aqueous electrolyte solution for a lithium secondary battery which includes an ionizable lithium salt, an organic solvent, and an additive, wherein the additive is a mixed additive which includes lithium difluorophosphate, tertiary alkylbenzene, and tetra-vinyl silane in a weight ratio of 1:1 to 4:0.05 to 0.5, and the additive is included in an amount of 2.5 wt % to 4.5 wt % based on a total weight of the non-aqueous electrolyte solution for a lithium secondary battery, and a lithium secondary battery including the same.
    Type: Grant
    Filed: November 15, 2017
    Date of Patent: January 21, 2020
    Assignee: LG Chem, Ltd.
    Inventors: Gwang Yeon Kim, Young Min Lim, Ha Eun Kim, Chul Haeng Lee
  • Publication number: 20190356021
    Abstract: An electrolyte for a lithium secondary battery of the present invention may improve high-rate charge and discharge characteristics and high-temperature storage and life characteristics of a lithium secondary battery and may achieve an effect of increasing reversible capacity by simultaneously including lithium bis(fluorosulfonyl)imide (LiFSI) and a second lithium salt, as a lithium salt, while including a second additive as well as a novel borate-based lithium compound, as an additive.
    Type: Application
    Filed: March 16, 2018
    Publication date: November 21, 2019
    Applicant: LG Chem, Ltd.
    Inventors: Young Min Lim, Chul Haeng Lee, Kyung Mi Lee
  • Patent number: 10454137
    Abstract: Provided are a non-aqueous electrolyte solution, which includes (i) a first lithium salt, (ii) lithium bis(fluorosulfonyl)imide as a second lithium salt, (iii) a phosphazene-based compound as a first additive, and (iv) a non-aqueous organic solvent, and a lithium secondary battery including the non-aqueous electrolyte solution. With respect to a lithium secondary battery including the non-aqueous electrolyte solution of the present invention, since a robust solid electrolyte interface (SEI) may be formed on the surface of a negative electrode during initial charge and flame retardancy in a high-temperature environment may be provided to prevent the decomposition of the surface of a positive electrode and an oxidation reaction of the electrolyte solution, output characteristics and capacity characteristics after high-temperature storage as well as output characteristics may be improved.
    Type: Grant
    Filed: September 24, 2015
    Date of Patent: October 22, 2019
    Assignee: LG Chem, Ltd.
    Inventors: Young Min Lim, Chul Haeng Lee
  • Publication number: 20190296397
    Abstract: An electrolyte additive composition of the present invention may improve high-rate charge and discharge characteristics and high-temperature storage and life characteristics of a lithium secondary battery when the electrolyte additive composition is used in an electrolyte while including a novel borate-based lithium compound as well as a nitrile-based compound.
    Type: Application
    Filed: March 16, 2018
    Publication date: September 26, 2019
    Applicant: LG Chem, Ltd.
    Inventors: Young Min LIM, Chul Haeng LEE, Ha Eun KIM
  • Patent number: 10403934
    Abstract: The present invention relates to a non-aqueous electrolyte solution including a non-aqueous organic solvent, lithium bis(fluorosulfonyl)imide (LiFSI), and a pyridine-based compound represented by Formula 1, and a lithium secondary battery including the same. The lithium secondary battery of the present invention including the non-aqueous electrolyte solution of the present invention may exhibit excellent low-temperature and room-temperature output characteristics, high-temperature and room-temperature cycle characteristics, and capacity characteristics after high-temperature storage.
    Type: Grant
    Filed: September 30, 2016
    Date of Patent: September 3, 2019
    Assignee: LG Chem, Ltd.
    Inventors: Gwang Yeon Kim, Young Min Lim, Chul Haeng Lee, Min Jung Kim, Ha Eun Kim
  • Publication number: 20190245244
    Abstract: The present invention relates to a non-aqueous electrolyte solution additive, and a non-aqueous electrolyte solution for a lithium secondary battery and a lithium secondary battery which comprise the same, wherein, specifically, since the non-aqueous electrolyte solution, which comprises a compound capable of maintaining a passive effect by increasing an effect of forming a solid electrolyte interface (SEI) on surfaces of a positive electrode and a negative electrode, is provided, high-temperature storage characteristics and life characteristics of the lithium secondary battery may be improved.
    Type: Application
    Filed: July 3, 2018
    Publication date: August 8, 2019
    Applicant: LG Chem, Ltd.
    Inventors: Young Min Lim, Chul Haeng Lee, Kyung Mi Lee
  • Publication number: 20190237823
    Abstract: A method for manufacturing a lithium secondary battery including the steps of manufacturing a lithium secondary battery including an electrode assembly, a non-aqueous electrolyte in which the electrode assembly is impregnated, and a battery case receiving the non-aqueous electrolyte; performing formation of the lithium secondary battery; and performing a degassing process for removing gas generated inside the lithium secondary battery, wherein the non-aqueous electrolyte includes a lithium salt, an organic solvent and 1,2,3-trifluorobenzen as an additive, wherein the 1,2,3-trifluorobenzen is included in an amount of 0.1 wt % to 10 wt % based on the total weight of the non-aqueous electrolyte, and the formation step is performed by charging the state of charge (SOC) of the battery up to 10% to 80%, while applying a voltage of 3.5 V to 4.5 V under a pressure of 0.5 kgf/cm2 to 5 kgf/cm2 at 45° C. to 80° C.
    Type: Application
    Filed: February 2, 2018
    Publication date: August 1, 2019
    Applicant: LG Chem, Ltd.
    Inventors: Jung Min Lee, Young Min Lim, Chul Haeng Lee, Yu Ha An, Yi Jin Jung, Yeon Ji Oh
  • Publication number: 20190237805
    Abstract: An electrolyte additive composition of the present invention may improve high-rate charge and discharge characteristics and high-temperature storage and life characteristics of a lithium secondary battery and may achieve an effect of increasing reversible capacity when the electrolyte additive composition is used in an electrolyte while including a novel borate-based lithium compound as well as a lithiated additive.
    Type: Application
    Filed: March 16, 2018
    Publication date: August 1, 2019
    Applicant: LG Chem, Ltd.
    Inventors: Young Min Lim, Chul Haeng Lee, Jung Min Lee
  • Publication number: 20190148773
    Abstract: The present invention relates to a non-aqueous electrolyte solution which includes an ionizable lithium salt, an organic solvent, and a mixed additive, wherein the organic solvent comprises at least one cyclic carbonate-based organic solvent selected from the group consisting of ethylene carbonate, 1,2-butylene carbonate, 2,3-butylene carbonate, 1,2-pentylene carbonate, 2,3-pentylene carbonate, vinylene carbonate, and fluoroethylene carbonate, and at least one linear carbonate-based organic solvent selected from the group consisting of dimethyl carbonate, diethyl carbonate, dipropyl carbonate, ethylmethyl carbonate, methylpropyl carbonate, and ethylpropyl carbonate, the mixed additive includes vinylene carbonate, 1,3-propylene sulfate, and 1,3-propane sultone in a weight ratio of 1:1:1 to 1:0.5:0.2, and a total amount of the mixed additive is in a range of 1 to 4.
    Type: Application
    Filed: January 18, 2018
    Publication date: May 16, 2019
    Applicant: LG Chem, Ltd.
    Inventors: Ha Eun Kim, Young Min Lim, Min Jung Kim, Chul Haeng Lee
  • Publication number: 20190140321
    Abstract: The present invention relates to a non-aqueous electrolyte for a lithium secondary battery including a pyridine-boron-based compound as an additive and a lithium secondary battery including the same, and particularly, to a non-aqueous electrolyte including at least two types of lithium salts and a pyridine-boron-based compound and a lithium secondary battery which has an enhanced effect of suppressing an increase in resistance and generation of gas after being stored at high temperature by including both the non-aqueous electrolyte and a negative electrode including lithium titanium oxide (LTO) as a negative electrode active material.
    Type: Application
    Filed: November 26, 2018
    Publication date: May 9, 2019
    Applicant: LG Chem, Ltd.
    Inventors: Kyoung Ho Ahn, Yi Jin Jung, Yu Ra Jeong, Chul Haeng Lee, Young Min Lim
  • Patent number: 10263284
    Abstract: The present disclosure provides a lithium secondary battery comprising a non-aqueous liquid electrolyte comprising lithium bis(fluorosulfonyl)imide (LiFSI) and a trimethylsilyl phosphate (TMSPa) additive, a positive electrode comprising a lithium-nickel-manganese-cobalt-based oxide as a positive electrode active material, a negative electrode and a separator. The non-aqueous liquid electrolyte for a lithium secondary battery of the present disclosure is capable of forming a solid SEI membrane in the negative electrode when initially charging a lithium secondary battery comprising the same, is capable of improving an output property of the lithium secondary battery, and is also capable of enhancing an output property and a capacity property after high temperature storage.
    Type: Grant
    Filed: September 25, 2015
    Date of Patent: April 16, 2019
    Assignee: LG Chem, Ltd.
    Inventors: Young Min Lim, Chul Haeng Lee
  • Publication number: 20190089004
    Abstract: The present invention relates to a non-aqueous electrolyte solution for a lithium secondary battery and a lithium secondary battery including the same, and particularly, to a non-aqueous electrolyte solution for a lithium secondary battery which includes an ionizable lithium salt, an organic solvent, and an additive, wherein the additive includes tetravinylsilane, lithium difluorophosphate, and 1,3-propylene sulfate in a weight ratio of 1:3 to 20:3 to 20, and a total amount of the additive is in a range of 1 wt % to 4 wt % based on a total weight of the non-aqueous electrolyte solution for a lithium secondary battery, and a lithium secondary battery including the same.
    Type: Application
    Filed: January 18, 2018
    Publication date: March 21, 2019
    Applicant: LG Chem, Ltd.
    Inventors: Ha Eun Kim, Young Min Lim, Gwang Yeon Kim, Chul Haeng Lee