Patents by Inventor Young-min Min

Young-min Min has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230026414
    Abstract: According to one embodiment, a magnetoresistive memory device includes: a first ferromagnetic layer; a stoichiometric first layer; a first insulator between the first ferromagnetic layer and the first layer; a second ferromagnetic layer between the first insulator and the first layer; and a non-stoichiometric second layer between the second ferromagnetic layer and the first layer. The second layer is in contact with the second ferromagnetic layer and the first layer.
    Type: Application
    Filed: October 3, 2022
    Publication date: January 26, 2023
    Applicants: KIOXIA CORPORATION, SK HYNIX INC.
    Inventors: Taiga ISODA, Eiji KITAGAWA, Young Min Min EEH, Tadaaki OIKAWA, Kazuya SAWADA, Kenichi YOSHINO, Jong Koo LIM, Ku Youl JUNG, Guk Cheon Cheon KIM
  • Publication number: 20170043775
    Abstract: A clutch burst prevention method for preventing a non-drive input shaft clutch of a vehicle provided with a double clutch transmission (DCT) from damage may include a torque reduction operation of reducing a torque of an engine by an ECU when a stuck phenomenon occurs on a shift gear of the non-drive input shaft.
    Type: Application
    Filed: November 14, 2015
    Publication date: February 16, 2017
    Applicants: Hyundai Motor Company, Kia Motors Corp.
    Inventor: Young Min Min YOON
  • Patent number: 8083892
    Abstract: A method for manufacturing a semiconductor device may include: forming a main magnetic field having an axis, and forming a subsidiary magnetic field substantially parallel to the axis; applying an alternating current along a path between the main and the subsidiary magnetic fields; allowing a gas to flow along a flow path along the path of the current so that a gas plasma is generated from the gas; providing the gas plasma into a chamber separated from a position where the gas plasma is generated; and performing a process for manufacturing a semiconductor device by employing the gas plasma.
    Type: Grant
    Filed: March 13, 2009
    Date of Patent: December 27, 2011
    Assignees: Samsung Electronics Co., Ltd., New Power Plasma Co., Ltd.
    Inventors: Young-Min Min, Dae-Kyu Choi, Do-In Bae, Yun-Sik Yang, Wan-Goo Hwang, Jin-Man Kim
  • Patent number: 7764483
    Abstract: There is provided a semiconductor etching apparatus which removes particles remaining on the upper surface of an electro static chuck (ESC) during an etching process, thereby preventing a chucking force from decreasing and minimizing a leak of helium. To prevent a failure of the etching process due to a wafer chucking failure, by preventing polymers from falling down on the upper part of the ESC when a wafer is dechucked or transferred, the semiconductor etching apparatus comprises: an ESC selectively holding a wafer to be entered and positioned inside a chamber, and including a lower electrode part to which RF power is applied; parts positioned at a stepped portion of the ESC and respectively surrounding a side of the ESC; and a gas flow blocking part blocking a gas flow in a vacuum path formed between the ESC and the parts.
    Type: Grant
    Filed: February 22, 2007
    Date of Patent: July 27, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jin-Man Kim, Yun-Sik Yang, Young-Min Min, Sang-Ho Kim
  • Publication number: 20090229758
    Abstract: A method for manufacturing a semiconductor device may include: forming a main magnetic field having an axis, and forming a subsidiary magnetic field substantially parallel to the axis; applying an alternating current along a path between the main and the subsidiary magnetic fields; allowing a gas to flow along a flow path along the path of the current so that a gas plasma is generated from the gas; providing the gas plasma into a chamber separated from a position where the gas plasma is generated; and performing a process for manufacturing a semiconductor device by employing the gas plasma.
    Type: Application
    Filed: March 13, 2009
    Publication date: September 17, 2009
    Inventors: Young-Min Min, Dae-Kyu Choi, Do-In Bae, Yun-Sik Yang, Wan-Goo Hwang, Jin-Man Kim
  • Patent number: 7578944
    Abstract: A method for manufacturing a semiconductor device may include: forming a main magnetic field having an axis, and forming a subsidiary magnetic field substantially parallel to the axis; applying an alternating current along a path between the main and the subsidiary magnetic fields; allowing a gas to flow along a flow path along the path of the current so that a gas plasma is generated from the gas; providing the gas plasma into a chamber separated from a position where the gas plasma is generated; and performing a process for manufacturing a semiconductor device by employing the gas plasma.
    Type: Grant
    Filed: November 14, 2005
    Date of Patent: August 25, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Young-Min Min, Dae-Kyu Choi, Do-In Bae, Yun-Sik Yang, Wan-Goo Hwang, Jin-Man Kim
  • Publication number: 20080194113
    Abstract: There is provided a semiconductor etching apparatus which removes particles remaining on the upper surface of an electro static chuck (ESC) during an etching process, thereby preventing a chucking force from decreasing and minimizing a leak of helium. To prevent a failure of the etching process due to a wafer chucking failure, by preventing polymers from falling down on the upper part of the ESC when a wafer is dechucked or transferred, the semiconductor etching apparatus comprises: an ESC selectively holding a wafer to be entered and positioned inside a chamber, and including a lower electrode part to which RF power is applied; parts positioned at a stepped portion of the ESC and respectively surrounding a side of the ESC; and a gas flow blocking part blocking a gas flow in a vacuum path formed between the ESC and the parts.
    Type: Application
    Filed: April 21, 2008
    Publication date: August 14, 2008
    Inventors: Jin-Man Kim, Yun-Sik Yang, Young-Min Min, Sang-Ho Kim
  • Publication number: 20080066867
    Abstract: There is provided a semiconductor etching apparatus which removes particles remaining on the upper surface of an electro static chuck (ESC) during an etching process, thereby preventing a chucking force from decreasing and minimizing a leak of helium. To prevent a failure of the etching process due to a wafer chucking failure, by preventing polymers from falling down on the upper part of the ESC when a wafer is dechucked or transferred, the semiconductor etching apparatus comprises: an ESC selectively holding a wafer to be entered and positioned inside a chamber, and including a lower electrode part to which RF power is applied; parts positioned at a stepped portion of the ESC and respectively surrounding a side of the ESC; and a gas flow blocking part blocking a gas flow in a vacuum path formed between the ESC and the parts.
    Type: Application
    Filed: February 22, 2007
    Publication date: March 20, 2008
    Inventors: Jin-Man Kim, Yun-Sik Yang, Young-Min Min, Sang-Ho Kim
  • Patent number: 7193369
    Abstract: A method for generating a plasma. A gas flows along a flow path having the displacement identical to the lines of magnetic force of the main magnetic field, and high frequency alternating current is applied to the gas, thereby generating a gas plasma. For example, a gas is flowed through a pipe in a first direction. Electricity is conducted through the pipe in substantially the first direction. And a magnetic field is applied along a second direction (e.g., perpendicular to the first direction) to the gas flowing in the pipe such that a plasma is induced in the pipe.
    Type: Grant
    Filed: February 20, 2003
    Date of Patent: March 20, 2007
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Young-Min Min, Dae-Kyu Choi, Do-In Bae, Yun-Sik Yang, Wan-Goo Hwang, Jin-Man Kim
  • Publication number: 20060084269
    Abstract: A method for manufacturing a semiconductor device may include: forming a main magnetic field having an axis, and forming a subsidiary magnetic field substantially parallel to the axis; applying an alternating current along a path between the main and the subsidiary magnetic fields; allowing a gas to flow along a flow path along the path of the current so that a gas plasma is generated from the gas; providing the gas plasma into a chamber separated from a position where the gas plasma is generated; and performing a process for manufacturing a semiconductor device by employing the gas plasma.
    Type: Application
    Filed: November 14, 2005
    Publication date: April 20, 2006
    Inventors: Young-Min Min, Dae-Kyu Choi, Do-In Bae, Yun-Sik Yang, Wan-Goo Hwang, Jin-Man Kim
  • Patent number: 6824617
    Abstract: An input/output valve switching apparatus of a semiconductor manufacturing system minimizes a vibration set up while operating an input/output valve for opening and closing a wafer-transfer passage that connects chambers of the system. The switching apparatus includes a valve actuator having a close port and an open port, a first fluid line connected to the close port, a second fluid line connected to the open port, first flow regulators installed in the first and second fluid lines, respectively, to regulate the flow rate of fluid, and second fluid flow regulators installed in the first and second fluid lines to regulate the flow rate of the fluid that has passed. The second fluid flow regulators can prevent a rapid introduction of the fluid into the actuator.
    Type: Grant
    Filed: April 25, 2002
    Date of Patent: November 30, 2004
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Yun-Sik Yang, Jin-Man Kim, Young-Min Min, Chang-Hyun Jo
  • Patent number: 6816029
    Abstract: An apparatus for matching the impedance of an RF generator to the impedance of an RF load, for use in manufacturing semiconductor devices by using a plasma. The apparatus includes a variable inductor coupled to a variable capacitor and an invariable capacitor, the variable inductor having two inductors coupled electrically with each other in series and disposed adjacent to each other. At least one of the two inductors is disposed movably to make the magnetic flux of the one inductor interfere with the magnetic flux of the other inductor, thereby to control the inductance of the variable inductor. In the case of a plasma enhanced semiconductor wafer processing system, the apparatus can reduce the time necessary to achieve an RF match between the RF generator and the RF load, thereby increasing the life of the apparatus.
    Type: Grant
    Filed: August 24, 2001
    Date of Patent: November 9, 2004
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Dae-Kyu Choi, Young-Min Min, Sang-Mun Chon, Yun-Sik Yang, Jin-Man Kim
  • Publication number: 20040092119
    Abstract: A method and an apparatus for generating a plasma, and a method and an apparatus for manufacturing a semiconductor device using the plasma. A gas flows along a flow path having the displacement identical to the lines of magnetic force of the main magnetic field, and high frequency alternating current is applied to the gas, thereby generating a gas plasma. The gas plasma is provided into a processing chamber to perform a process for manufacturing the semiconductor device.
    Type: Application
    Filed: February 20, 2003
    Publication date: May 13, 2004
    Inventors: Young-Min Min, Dae-Kyu Choi, Do-In Bae, Yun-Sik Yang, Wan-Goo Hwang, Jin-Man Kim
  • Patent number: 6684652
    Abstract: A refrigeration system regulates the temperature of an electrostatic wafer chuck disposed in a process chamber. The refrigeration system includes a heat exchanger disposed in a heat exchange relationship with the electrostatic chuck, a refrigerator, a temperature sensor, and a temperature controller for controlling the refrigerator to cool the coolant withdrawn from the heat exchanger to a desired temperature in response to the temperature detected by the temperature sensor. The heat exchanger forms a coolant passageway inside the electrostatic chuck, and the refrigerator is disposed outside the process chamber. The temperature sensor is disposed within the body of the electrostatic chuck. The temperature of the electrostatic chuck can be regulated so as to be maintained nearly constant because the temperature used to control the cooling of the coolant is measured directly from the body of the electrostatic chuck.
    Type: Grant
    Filed: April 30, 2002
    Date of Patent: February 3, 2004
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jin-Man Kim, Yun-Sik Yang, Sang-Jun Chun, Young-Min Min
  • Publication number: 20030010450
    Abstract: An input/output valve switching apparatus of a semiconductor manufacturing system minimizes a vibration set up while operating an input/output valve for opening and closing a wafer-transfer passage that connects chambers of the system. The switching apparatus includes a valve actuator having a close port and an open port, a first fluid line connected to the close port, a second fluid line connected to the open port, first flow regulators installed in the first and second fluid lines, respectively, to regulate the flow rate of fluid, and second fluid flow regulators installed in the first and second fluid lines to regulate the flow rate of the fluid that has passed. The second fluid flow regulators can prevent a rapid introduction of the fluid into the actuator. SEC.
    Type: Application
    Filed: April 25, 2002
    Publication date: January 16, 2003
    Inventors: Yun-Sik Yang, Jin-Man Kim, Young-Min Min, Chang-Hyun Jo
  • Publication number: 20020174667
    Abstract: A refrigeration system regulates the temperature of an electrostatic wafer chuck disposed in a process chamber. The refrigeration system includes a heat exchanger disposed in a heat exchange relationship with the electrostatic chuck, a refrigerator, a temperature sensor, and a temperature controller for controlling the refrigerator to cool the coolant withdrawn from the heat exchanger to a desired temperature in response to the temperature detected by the temperature sensor. The heat exchanger forms a coolant passageway inside the electrostatic chuck, and the refrigerator is disposed outside the process chamber The temperature sensor is disposed within the body of the electrostatic chuck. The temperature of the electrostatic chuck can be regulated so as to be maintained nearly constant because the temperature used to control the cooling of the coolant is measured directly from the body of the electrostatic chuck.
    Type: Application
    Filed: April 30, 2002
    Publication date: November 28, 2002
    Inventors: Jin-Man Kim, Yun-Sik Yang, Sang-Jun Chun, Young-Min Min
  • Publication number: 20020023718
    Abstract: An apparatus for matching the impedance of an RF generator to the impedance of an RF load, for use in manufacturing semiconductor devices by using a plasma. The apparatus includes a variable inductor coupled to a variable capacitor and an invariable capacitor, the variable inductor having two inductors coupled electrically with each other in series and disposed adjacent to each other. At least one of the two inductors is disposed movably to make the magnetic flux of the one inductor interfere with the magnetic flux of the other inductor, thereby to control the inductance of the variable inductor. In the case of a plasma enhanced semiconductor wafer processing system, the apparatus can reduce the time necessary to achieve an RF match between the RF generator and the RF load, thereby increasing the life of the apparatus.
    Type: Application
    Filed: August 24, 2001
    Publication date: February 28, 2002
    Inventors: Dae-Kyu Choi, Young-Min Min, Sang-Mun Chon, Yun-Sik Yang, Jin-Man Kim
  • Patent number: 6202590
    Abstract: A plasma apparatus for fabricating a semiconductor device, is provided. This plasma apparatus includes a grounded chamber for providing a space where a predetermined process is to be performed, a chuck mounted within the chamber and insulated from the chamber, a gas injection ring installed around the sidewall of the chuck, an induction plasma power source connected to the chuck, a system controller for controlling the induction plasma power source, and a capacitance compensator for keeping the total chuck capacitance between the chuck and a ground terminal at a constant value. The gas injection ring is separated from the chuck by a predetermined distance and is electrically connected to the chamber.
    Type: Grant
    Filed: September 24, 1999
    Date of Patent: March 20, 2001
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Kiw-sang Kim, Young-min Min, In-sung Park