Patents by Inventor Young Seak Lee

Young Seak Lee has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8889299
    Abstract: Disclosed are a positive active material that includes a core particle including a lithium-containing compound configured to reversibly intercalate and deintercalate lithium, and a coating layer on a surface of the core particle, the coating layer including a material including a carbon-fluorine (C—F) bond, a method of manufacturing the same, and a rechargeable lithium battery including the positive active material.
    Type: Grant
    Filed: August 24, 2012
    Date of Patent: November 18, 2014
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Kyeu-Yoon Sheem, Young-Seak Lee
  • Publication number: 20130164624
    Abstract: Disclosed are a positive active material that includes a core particle including a lithium-containing compound configured to reversibly intercalate and deintercalate lithium, and a coating layer on a surface of the core particle, the coating layer including a material including a carbon-fluorine (C—F) bond, a method of manufacturing the same, and a rechargeable lithium battery including the positive active material.
    Type: Application
    Filed: August 24, 2012
    Publication date: June 27, 2013
    Inventors: Kyeu-Yoon Sheem, Young-Seak Lee
  • Patent number: 8455045
    Abstract: Disclosed is a high sensitive gas sensor using a carbon material containing an ionized metal catalyst and a method of manufacturing the same. The method includes the steps of: (1) preparing a hydroxide solution by dissolving a hydroxide in a distilled water; (2) dissolving a metal catalyst in the hydroxide solution; (3) immersing the carbon material in a solution obtained through step (2) and stirring the carbon material; (4) heat-treating a mixture obtained through step (3); (5) cleaning the heat-treated carbon material obtained through step (4); (6) drying the carbon material cleaned through step (5); and (7) manufacturing the gas sensor by loading the carbon material obtained through step (6) on a substrate. The gas sensor having high sensitivity and responsiveness with respect to a target gas even in a normal temperature is obtained.
    Type: Grant
    Filed: December 21, 2010
    Date of Patent: June 4, 2013
    Assignee: Chungnam National Industry Collaboration Foundation
    Inventors: Young Seak Lee, Seok Chang Kang, Sung Kyu Lee, Ji Sun Im
  • Patent number: 8192897
    Abstract: There is provided a method for preparation of a transition metal electroplated porous carbon nanofiber composite for hydrogen storage. Specifically, the preparation method of a transition metal electroplated porous carbon nanofiber composite for hydrogen storage according to the present invention comprises electroplating a transition metal with a controlled particle diameter and a surface dispersion ratio on a porous carbon nanofiber with specific surface area from 500 to 3000 m2/g, pore volume from 0.1 to 2.0 cc/g and diameter from 10 to 500 nm. With increased hydrogen storage capacity, the transition metal electroplated porous carbon nanofiber composite provided by the present invention can be utilized as hydrogen storage medium of active material for electrodes of electrochemical devices, such as fuel cell, secondary cell and supercapcitor.
    Type: Grant
    Filed: March 31, 2008
    Date of Patent: June 5, 2012
    Assignee: INHA-Industry Partnership Institute
    Inventors: Soo Jin Park, Byung Joo Kim, Young Seak Lee
  • Publication number: 20120045574
    Abstract: Disclosed is a high sensitive gas sensor using a carbon material containing an ionized metal catalyst and a method of manufacturing the same. The method includes the steps of: (1) preparing a hydroxide solution by dissolving a hydroxide in a distilled water; (2) dissolving a metal catalyst in the hydroxide solution; (3) immersing the carbon material in a solution obtained through step (2) and stirring the carbon material; (4) heat-treating a mixture obtained through step (3); (5) cleaning the heat-treated carbon material obtained through step (4); (6) drying the carbon material cleaned through step (5); and (7) manufacturing the gas sensor by loading the carbon material obtained through step (6) on a substrate. The gas sensor having high sensitivity and responsiveness with respect to a target gas even in a normal temperature is obtained.
    Type: Application
    Filed: December 21, 2010
    Publication date: February 23, 2012
    Applicant: Chungnam National University Industry Collaboration Foundation
    Inventors: Young Seak LEE, Seok Chang Kang, Sung Kyu Lee, Ji Sun Im
  • Publication number: 20120034523
    Abstract: Disclosed are a negative active material for a rechargeable lithium battery and a rechargeable lithium battery including the same. The negative active material may include a metal oxide in an amount of about 20 wt % or more, and has a specific surface area of about 500 m2/g or less. The negative active material may be fiber including carbon black in which a metal oxide is internally impregnated and combined. This fiber includes only carbon black and a metal oxide internally doped. The fiber may have nanofiber having an average diameter ranging from about 50 nm to about 900 nm. In another embodiment, the fiber may have an average diameter ranging from about 150 nm to about 900 nm. When the fiber has an average diameter within these ranges, a metal oxide nanoparticle is internally well-impregnated, accomplishing excellent performance.
    Type: Application
    Filed: December 21, 2010
    Publication date: February 9, 2012
    Applicant: SAMSUNG SDI CO., LTD.
    Inventors: Kyeu-Yoon SHEEM, Sumihito ISHIDA, Eui-Hwan SONG, Young-Seak LEE
  • Publication number: 20110143023
    Abstract: Disclosed is a method of manufacturing a gas sensor by using a nano-fiber including metal oxide. The method of manufacturing the gas sensor includes the steps of (1) mixing a polymer precursor with a solvent, (2) dispersing metal oxide into the mixture obtained through step (1), (3) preparing a nano-fiber by performing electro-spinning with respect to the mixture obtained through step (2), (4) oxidizing the nano-fiber obtained through step (3), (5) carbonizing the nano-fiber that has been oxidized through step (4), (6) activating the nano-fiber that has been carbonized through step (5), and (7) manufacturing the gas sensor by depositing the nano-fiber, which has been activated through step (6), between electrodes of a silicon wafer. The gas sensor is manufactured with superior sensitivity at a normal temperature and reliability.
    Type: Application
    Filed: December 15, 2010
    Publication date: June 16, 2011
    Applicant: Chungnam National University Industry Collaboration Foundation
    Inventors: Young Seak Lee, Seok Chang Kang, Sung Kyu Lee, Ji Sun Im
  • Publication number: 20090181266
    Abstract: There is provided a method for preparation of a transition metal electroplated porous carbon nanofiber composite for hydrogen storage. Specifically, the preparation method of a transition metal electroplated porous carbon nanofiber composite for hydrogen storage according to the present invention comprises electroplating a transition metal with a controlled particle diameter and a surface dispersion ratio on a porous carbon nanofiber with specific surface area from 500 to 3000 m2/g, pore volume from 0.1 to 2.0 cc/g and diameter from 10 to 500 nm. With increased hydrogen storage capacity, the transition metal electroplated porous carbon nanofiber composite provided by the present invention can be utilized as hydrogen storage medium of active material for electrodes of electrochemical devices, such as fuel cell, secondary cell and supercapcitor.
    Type: Application
    Filed: March 31, 2008
    Publication date: July 16, 2009
    Inventors: Soo Jin Park, Byung Joo Kim, Young Seak Lee
  • Publication number: 20070059233
    Abstract: Provided are carbon materials having a high specific surface area and high conductivity, and a preparation method thereof. The carbon material includes pores on the surface and inside, with channels connecting the pores to one another. Such carbon material has a high specific surface area and high conductivity, and can be used in a number of diverse fields. Exemplary uses include use as an electric double layer capacitor (EDLC), as a catalyst supporter of a fuel cell, as an electrode conductive material of a rechargeable lithium battery, and as an adsorption agent.
    Type: Application
    Filed: August 31, 2006
    Publication date: March 15, 2007
    Inventors: Kyou-Yoon Sheem, Sung-Soo Kim, Young-Hee Lee, Young-Seak Lee