Patents by Inventor Young-Sik Hong

Young-Sik Hong has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240128630
    Abstract: The present invention relates to a support pole assembly for mounting an antenna and, particularly, to a support pole assembly for mounting an antenna, comprising: a support pole which is formed in a hollow structure and has an antenna device mounting hole formed at the circumferential surface thereof; an antenna device which is mounted to the support pole while passing through and covering the antenna device mounting hole and the rear portion of which is placed in the inner space of the support pole. Accordingly, the present invention provides an advantage in that the protrusion amount of the antenna device with respect to the support pole is reduced and thus the space required for mounting the antenna device can be reduced.
    Type: Application
    Filed: December 28, 2023
    Publication date: April 18, 2024
    Applicant: KMW INC.
    Inventors: Duk Yong KIM, Chi Back RYU, Min Sik PARK, Kyo Sung JI, In Ho KIM, Sang Hyo KANG, Min Soo KIM, Hee KIM, Young Ji HONG
  • Patent number: 11957706
    Abstract: The present disclosure relates to a composition for preventing or treating fibrosis including an inhibitor of cyclin-dependent kinase 17 (CDK17) expression or activity. According to the present disclosure, the inhibitor of CDK17 expression or activity significantly reduces collagen production and cell activity and viability in activated hepatic stellate cells (liver fibrosis cell model), renal tubular epithelial cells (renal fibrosis cell model) in which fibrosis is induced by TGF-? treatment, and alveolar epithelial cells (lung fibrosis cell model) in which fibrosis is induced by TGF-? treatment, indicating that the composition of the present disclosure has an excellent effect in preventing or treating fibrosis.
    Type: Grant
    Filed: May 31, 2022
    Date of Patent: April 16, 2024
    Assignee: Korea University Research and Business Foundation
    Inventors: Young Sik Lee, Do Hoon Lee, Min Seok Choi, Jae Sang Hong
  • Patent number: 7871572
    Abstract: Provided are mixed ligand metal nanoparticle chemical sensors in which metal nanoparticles are encapsulated by at least two kinds of different molecule ligands having a relatively low conductivity and various composition ratios, and a chemical sensor array in which a film of the metal nanoparticle sensor is formed on the substrate. The metal nanoparticle sensor using the mixed ligand improves sensitivity and reaction speed with respect to an analyte, and selectivity with respect to various analytes, and a kind and a composition of a ligand of the mixed ligand constituting the metal nanoparticle sensor are adjusted to allow the high sensitivity nanoparticle sensor to be applied to the sensor array technology, thereby enabling a design of sensor properties as well as systematic access to a configuration of the sensor array the most efficient for the analytes.
    Type: Grant
    Filed: September 21, 2004
    Date of Patent: January 18, 2011
    Assignee: Electronics and Telecommunications Research Instutute
    Inventors: Young Jun Kim, Yong Shin Kim, Yoon Seok Yang, Seung Chul Ha, Hae Sik Yang, Yun Tae Kim, Dae Sik Lee, Young Sik Hong
  • Patent number: 7008608
    Abstract: Provided is a lithium-cobalt-manganese oxide having the formula Li[CoxLi(1/3?x/3)Mn(2/3?2x/3)]O2(0.05<X<0.9) which provide a stable structure and a superior discharge capacity, and the method of synthesizing of the same. The method of synthesizing the oxides according to the present invention comprises: preparing an aqueous solution of lithium salt, cobalt salt, and manganese salt; forming a gel by burning the aqueous solution; making oxide powder by burning the gel; forming a fine oxide powder having a layered structure by the twice of treatments. The lithium-cobalt-manganese oxide synthesized according to the present invention has a stable and superior electrochemical characteristic. The oxide is synthesized by simple and low cost heat treatment process.
    Type: Grant
    Filed: December 17, 2003
    Date of Patent: March 7, 2006
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Yong Joon Park, Young Sik Hong, Xianglan Wu, Kwang Man Kim, Young Gi Lee, Kwang Sun Ryu, Soon Ho Chang
  • Patent number: 6986968
    Abstract: A cathode active material for a lithium secondary cell used in a cellular phone is disclosed. The cathode active material for the lithium secondary cell and the method the same having a high capacity and a long lifetime, different from LiCoO2 and LiMn2O4, Li(Ni, Co)O2, and V-system oxide that has been researched as the active material for substituting LiCoO2 are provided. The cathode active material for the lithium secondary cell in the next formula 1 is obtained by heating or chemically treating diadochite [Fe2(PO4)(SO4)(OH).6H2O] that is the mineral containing PO43?, SO42?, and OH?. LiaFebMc(PO4)x(SO4)y(OH)z ??(1) In the formula, M is at least one element selected from a radical consisting of Mg, Ti, Cr, Mn, Co, Ni, Cu, Zn, Al, and Si, with 0?a, c?0.5, 1?b?2, 0.5?x, y, z?1.5.
    Type: Grant
    Filed: December 20, 2002
    Date of Patent: January 17, 2006
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Young Sik Hong, Kwang Sun Ryu, Soon Ho Chang, Yong Joon Park, Young Gi Lee, Kwang Man Kim, Nam Gyu Park, Man Gu Kang, Xiang Lan Wu
  • Patent number: 6908708
    Abstract: A method of preparing layered lithium-chromium-manganese oxides having the formula Li[CrxLi(1/3?x/3) Mn(2/3?2x/3)]O2 where 0.1?X?0.5 for lithium batteries. Homogeneous precipitation is prepared by adding lithium hydroxide (LiOH) solution to a mixed solution of chromium acetate (Cr3(OH)2(CH3CO2)7) and manganese acetate ((CH3CO2)2Mn.4H2O), while precursor powders are prepared by firing the precipitation. After that, the precursor powders are subjected to two heat treatment to yield Li[CrxLi(1/3?x/3) Mn(2/3?2x/3)]O2 with ?-LiFeO2 structure.
    Type: Grant
    Filed: August 25, 2003
    Date of Patent: June 21, 2005
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Xianglan Wu, Yong Joon Park, Kwang Sun Ryu, Soon Ho Chang, Young-Sik Hong
  • Publication number: 20040228791
    Abstract: Provided is a lithium-cobalt-manganese oxide having the formula Li[CoxLi(1/3-x/3)Mn(2/3-2x/3)]O2 (0.05<X<0.9) which provide a stable structure and a superior discharge capacity, and the method of synthesizing of the same. The method of synthesizing the oxides according to the present invention comprises: preparing an aqueous solution of lithium salt, cobalt salt, and manganese salt; forming a gel by burning the aqueous solution; making oxide powder by burning the gel; forming a fine oxide powder having a layered structure by the twice of treatments. The lithium-cobalt-manganese oxide synthesized according to the present invention has a stable and superior electrochemical characteristic. The oxide is synthesized by simple and low cost heat treatment process.
    Type: Application
    Filed: December 17, 2003
    Publication date: November 18, 2004
    Inventors: Yong Joon Park, Young Sik Hong, Xianglan Wu, Kwang Man Kim, Young Gi Lee, Kwang Sun Ryu, Soon Ho Chang
  • Publication number: 20040115534
    Abstract: Provided is a method for preparing a Li—Mn—Ni oxide for a lithium secondary battery having a composition of Li[NixLi(1/3-2x/3)Mn(2/3-X/3)O2 (0.05<X<0.6), including the steps of: a] preparing an aqueous solution by resolving lithium salt, manganese salt and nickel salt into distilled water; b) forming gel by heating the aqueous solution; c) preparing oxide powder by burning the gel; d) performing a first thermal treatment on the oxide powder, and grinding the resultant; and e) performing a second thermal treatment on the resultant powder, and grinding the resultant. The technology of the present invention can prepare a Li—Mn—Ni oxide having a composition of Li[NixLi(1/3-2x/3)Mn(2/3-x/3)O2 (0.05<X<0.6) to be used as a cathode material of a lithium secondary battery having a stable and excellent electrochemical characteristics.
    Type: Application
    Filed: October 8, 2003
    Publication date: June 17, 2004
    Inventors: Yong-Joon Park, Young-Sik Hong, Xianglan Wu, Kwang Sun Ryu, Kwang Man Kim, Young-Gi Lee, Soon Ho Chang
  • Publication number: 20040105809
    Abstract: A method of preparing layered lithium-chromium-manganese oxides having the formula Li[CrxLi(1/3-x/3) Mn(2/3-2x/3)]O2 where 0.1≦X≦0.5 for lithium batteries. Homogeneous precipitation is prepared by adding lithium hydroxide (LiOH) solution to a mixed solution of chromium acetate (Cr3(OH)2(CH3CO2)7) and manganese acetate ((CH3CO2)2Mn.4H2O), while precursor powders are prepared by firing the precipitation. After that, the precursor powders are subjected to two heat treatment to yield Li[CrxLi(1/3-x/3) Mn(2/3-2x/3)]O2 with &agr;-LiFeO2 structure.
    Type: Application
    Filed: August 25, 2003
    Publication date: June 3, 2004
    Inventors: Xianglan Wu, Yong Joon Park, Kwang Sun Ryu, Soon Ho Chang, Young-Sik Hong
  • Publication number: 20040072069
    Abstract: A cathode active material for a lithium secondary cell used in a cellular phone is disclosed. The cathode active material for the lithium secondary cell and the method the same having a high capacity and a long lifetime, different from LiCoO2 and LiMn2O4, Li(Ni, Co)O2, and V-system oxide that has been researched as the active material for substituting LiCoO2 are provided. The cathode active material for the lithium secondary cell in the next formula 1 is obtained by heating or chemically treating diadochite [Fe2(PO4)(SO4)(OH).6H2O] that is the mineral containing PO43−, SO42−, and OH−.
    Type: Application
    Filed: December 20, 2002
    Publication date: April 15, 2004
    Inventors: Young Sik Hong, Kwang Sun Ryu, Soon Ho Chang, Yong Joon Park, Young Gi Lee, Kwang Man Kim, Nam Gyu Park, Man Gu Kang, Xiang Lan Wu
  • Publication number: 20040071866
    Abstract: The present invention relates to a method of manufacturing a cathode electrode for a secondary lithium battery using vanadium oxide. Vanadium oxide is dissolved in an aqueous solution containing H2O2 to form a gel. Thus, the gel can be applied to a metal support even when the binder is not used or the binder of a small amount is used. If vanadium oxide of an adequate amount is put into the aqueous solution containing. H2O2, a transparent aqueous solution is formed while oxygen is generated. The aqueous solution is then changed to a gel state of a viscosity as the time elapses. A small amount of a conductive material and a binder are added in the course that the gel is formed, and are then uniformly mixed with vanadium oxide being an active material, so that a slurry is formed. As the slurry has a high viscosity, it can be applied to the metal support even with a small amount of the binder. Further, as the conductive material, the binder, etc.
    Type: Application
    Filed: December 18, 2002
    Publication date: April 15, 2004
    Inventors: Yong Joon Park, Kwang Man Kim, Young Sik Hong, Xiang Lan Wu, Young Gi Lee, Kwang Sun Ryu, Soon Ho Chang