Patents by Inventor Young Tae Guahk

Young Tae Guahk has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11466618
    Abstract: The present invention provides a direct-fired supercritical carbon dioxide power generation system and a power generation method thereof, the system comprising: a combustor for burning hydrocarbon fuel and oxygen; a turbine driven by combustion gas discharged from the combustor; a heat exchanger for cooling combustion gas discharged after driving the turbine, by heat exchange with combustion gas recycled and supplied to the combustor; and an air separation unit for separating air to produce oxygen, wherein a portion of the combustion gas discharged after driving the turbine is branched before being introduced to the heat exchanger and is supplied to the air separation unit.
    Type: Grant
    Filed: September 30, 2019
    Date of Patent: October 11, 2022
    Assignee: KOREA INSTITUTE OF ENERGY RESEARCH
    Inventors: Dae-Keun Lee, Dong-Soon Noh, Chang-Bog Ko, Young-Tae Guahk, Seung-Gon Kim, Min-Jung Lee, Eun-Kyung Lee, Woo-Nam Jung, Nam-Su Kim
  • Publication number: 20210404381
    Abstract: The present invention provides a direct-fired supercritical carbon dioxide power generation system and a power generation method thereof, the system comprising: a combustor for burning hydrocarbon fuel and oxygen; a turbine driven by combustion gas discharged from the combustor; a heat exchanger for cooling combustion gas discharged after driving the turbine, by heat exchange with combustion gas recycled and supplied to the combustor; and an air separation unit for separating air to produce oxygen, wherein a portion of the combustion gas discharged after driving the turbine is branched before being introduced to the heat exchanger and is supplied to the air separation unit.
    Type: Application
    Filed: September 30, 2019
    Publication date: December 30, 2021
    Applicant: KOREA INSTITUTE OF ENERGY RESEARCH
    Inventors: Dae-Keun LEE, Dong-Soon NOH, Chang-Bog KO, Young-Tae GUAHK, Seung-Gon KIM, Min-Jung LEE, Eun-Kyung LEE, Woo-Nam JUNG, Nam-Su KIM
  • Patent number: 10465905
    Abstract: The present invention relates to a combustion device 100 for burning refractory hazardous gases and a burning method for the combustion device. More particularly, the combustion device 110 for burning refractory hazardous gases, which is provided in a scrubber system 1 for burning waste gases, the combustion device 110 includes: a first porous body 141; a second porous body 142; and an igniter for forming a flame surface 143 at the interior of the combustion device 110, wherein the flame surface 143 formed by the igniter is located between the first porous body 141 and the second porous body 142, and so as to form the flame surface 143, at least one of the first porous body 141 and the second porous body 142 is moved to conduct excess enthalpy combustion.
    Type: Grant
    Filed: March 26, 2015
    Date of Patent: November 5, 2019
    Assignee: Korea Institute of Energy Research
    Inventors: Dae Keun Lee, Seung-gon Kim, Dong-soon Noh, Chang-bog Ko, Young-tae Guahk
  • Publication number: 20170102143
    Abstract: The present invention relates to a combustion device 100 for burning refractory hazardous gases and a burning method for the combustion device. More particularly, the combustion device 110 for burning refractory hazardous gases, which is provided in a scrubber system 1 for burning waste gases, the combustion device 110 includes: a first porous body 141; a second porous body 142; and an igniter for forming a flame surface 143 at the interior of the combustion device 110, wherein the flame surface 143 formed by the igniter is located between the first porous body 141 and the second porous body 142, and so as to form the flame surface 143, at least one of the first porous body 141 and the second porous body 142 is moved to conduct excess enthalpy combustion.
    Type: Application
    Filed: March 26, 2015
    Publication date: April 13, 2017
    Applicant: KOREA INSTITUTE OF ENERGY RESEARCH
    Inventors: Dae Keun Lee, Seung-gon KIM, Dong-soon NOH, Chang-bog KO, Young-tae GUAHK
  • Patent number: 9149758
    Abstract: Provided are a continuous oxygen adsorption and desorption device and an continuous oxygen adsorption and desorption method using the device, and more particularly, an continuous oxygen adsorption and desorption device for producing high-purity oxygen products by using a plurality of adsorption and desorption towers filled with an oxygen-selecting adsorption and desorption agent selected from BaMg(CO3)2 particles or particles in which either MgCO3 or Mg(OH)2 has been attached to the outside of BaMg(CO3)2, and also a continuous oxygen adsorption and desorption method using the device.
    Type: Grant
    Filed: February 18, 2013
    Date of Patent: October 6, 2015
    Assignee: KOREA INSTITUTE OF ENERGY RESEARCH
    Inventors: Jong-Ho Park, Tae Sung Jung, Hyung Chul Yoon, Young Tae Guahk, Hee-Tae Beum, Jong-kee Park, Sang-Sup Han, Jong-Nam Kim, Soon-Haeng Cho
  • Publication number: 20150047504
    Abstract: Provided are a continuous oxygen adsorption and desorption device and an continuous oxygen adsorption and desorption method using the device, and more particularly, an continuous oxygen adsorption and desorption device for producing high-purity oxygen products by using a plurality of adsorption and desorption towers filled with an oxygen-selecting adsorption and desorption agent selected from BaMg(CO3)2 particles or particles in which either MgCO3 or Mg(OH)2 has been attached to the outside of BaMg(CO3)2, and also a continuous oxygen adsorption and desorption method using the device.
    Type: Application
    Filed: February 18, 2013
    Publication date: February 19, 2015
    Inventors: Jong-Ho Park, Tae Sung Jung, Hyung Chul Yoon, Young Tae Guahk, Hee-Tae Beum, Jong-kee Park, Sang-Sup Han, Jong-Nam Kim, Soon-Haeng Cho