Patents by Inventor Youngpyo Ko

Youngpyo Ko has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11866623
    Abstract: A conductive polymer composite for adhesion to a flexible substrate contains a polymer adhesive containing a curable polymer and a curing agent; and a conductive filler containing a metal and a carbonaceous material dispersed in the polymer adhesive. The conductive polymer composite is suitable for application to not only the human body but also other objects having irregular surface. In addition, due to enhanced adhesive strength of the conductive polymer composite to the flexible substrate, the reduction in conductivity or conductivity breakdown caused by external stress can be prevented and flexibility and stretchability can be improved.
    Type: Grant
    Filed: July 2, 2019
    Date of Patent: January 9, 2024
    Assignee: Korea Institute of Science and Technology
    Inventors: Heesuk Kim, Youngpyo Ko, Min Park, Sang-Soo Lee, Jeong Gon Son, Jong Hyuk Park, Seungjun Chung, Tae Ann Kim
  • Patent number: 11787966
    Abstract: A method of manufacturing a paste according to various embodiments of the present disclosure for resolving the above-described problems is disclosed. The method of manufacturing a paste may include an operation of adding a metal conductor and a multi-walled carbon nanotube (MWCNT) to chloroform (CHCl3) to produce a first mixture, an operation of adding polydimethylsiloxane (PDMS) to the first mixture to produce a second mixture, an operation of evaporating the chloroform in the second mixture to acquire a third mixture, and an operation of adding an additional additive to the third mixture to produce a paste.
    Type: Grant
    Filed: January 4, 2022
    Date of Patent: October 17, 2023
    Assignee: Korea Institute of Science and Technology
    Inventors: Seungjun Chung, Byeongmoon Lee, Hyunjoo Cho, Heesuk Kim, Phillip Lee, JeongGon Son, JaiKyeong Kim, Youngpyo Ko
  • Publication number: 20230212409
    Abstract: Disclosed is a conductive polymer composite according to various embodiments of the present invention in order to implement the above-described object. The conductive polymer composite may include a polymer adhesive which includes a curable polymer and a curing agent, a conductive filler made of a metal having electrical properties, and a substituting agent configured to substitute for or remove a lubricant layer applied on the conductive filler.
    Type: Application
    Filed: March 24, 2022
    Publication date: July 6, 2023
    Applicant: Korea Institute of Science and Technology
    Inventors: HeeSuk KIM, JeeIn JUNG, SeungJun CHUNG, JeongGon SON, Phillip LEE, Youngpyo KO
  • Publication number: 20230010066
    Abstract: A method of manufacturing a paste according to various embodiments of the present disclosure for resolving the above-described problems is disclosed. The method of manufacturing a paste may include an operation of adding a metal conductor and a multi-walled carbon nanotube (MWCNT) to chloroform (CHCl3) to produce a first mixture, an operation of adding polydimethylsiloxane (PDMS) to the first mixture to produce a second mixture, an operation of evaporating the chloroform in the second mixture to acquire a third mixture, and an operation of adding an additional additive to the third mixture to produce a paste.
    Type: Application
    Filed: January 4, 2022
    Publication date: January 12, 2023
    Applicant: Korea Institute of Science and Technology
    Inventors: Seungjun CHUNG, Byeongmoon LEE, Hyunjoo CHO, Heesuk KIM, Phillip LEE, JeongGon SON, JaiKyeong KIM, Youngpyo KO
  • Patent number: 11299655
    Abstract: A highly-dielectric, elastic structure includes an elastic body that is highly-dielectric and includes a polymer matrix that including 1000 pbw of a polydimethylsiloxane (PDMS) base and 100 pbw of a PDMS curing agent, and has a tensile strength of 0.1 to 10 MPa; and 22.4 pbw of carbon black that is surface-treated with octadecyltrimethoxysilane (ODTMS) in an amount of at least 0.707 mmol per 22.4 pbw of the carbon black, and that is dispersed in the polymer matrix and cured; and an adhesive electrode that is stretchable, that is disposed on the elastic body, and that includes a polymer adhesive including a 500 pbw of a thermosetting silicone-based polymer adhesive including a curable polymer and a curing agent; and a conductive filler comprising 500 pbw of silver particles and 4000 pbw of a carbonaceous material that is a multi-walled carbon nanotube that are dispersed in the polymer adhesive and cured.
    Type: Grant
    Filed: July 2, 2019
    Date of Patent: April 12, 2022
    Assignee: Korea Institute of Science and Technology
    Inventors: Heesuk Kim, Youngpyo Ko, Min Park, Sang-Soo Lee, Jeong Gon Son, Jong Hyuk Park, Seungjun Chung, Tae Ann Kim
  • Publication number: 20200190372
    Abstract: A highly dielectric elastic structure contains a highly dielectric elastic body containing a polymer matrix and a dielectric material dispersed in the polymer matrix; and a stretchable adhesive electrode disposed on the highly dielectric elastic body, wherein the stretchable adhesive electrode contains a polymer adhesive containing a curable polymer and a curing agent; and a conductive filler containing a metal and a carbonaceous material dispersed in the polymer adhesive. The highly dielectric elastic structure of the present disclosure provides the effects of increasing dielectric constant through composition of a polymer dielectric and a dielectric material, improving dielectric properties by forming a stretchable conductive adhesive on the composite material as an electrode and exhibiting stable dielectric properties by improving mechanical stability.
    Type: Application
    Filed: July 2, 2019
    Publication date: June 18, 2020
    Applicant: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Heesuk Kim, Youngpyo Ko, Min Park, Sang-Soo Lee, Jeong Gon Son, Jong Hyuk Park, Seungjun Chung, Tae Ann Kim
  • Publication number: 20200181463
    Abstract: A conductive polymer composite for adhesion to a flexible substrate contains a polymer adhesive containing a curable polymer and a curing agent; and a conductive filler containing a metal and a carbonaceous material dispersed in the polymer adhesive. The conductive polymer composite is suitable for application to not only the human body but also other objects having irregular surface. In addition, due to enhanced adhesive strength of the conductive polymer composite to the flexible substrate, the reduction in conductivity or conductivity breakdown caused by external stress can be prevented and flexibility and stretchability can be improved.
    Type: Application
    Filed: July 2, 2019
    Publication date: June 11, 2020
    Applicant: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Heesuk KIM, Youngpyo Ko, Min Park, Sang-Soo Lee, Jeong Gon Son, Jong Hyuk Park, Seungjun Chung, Tae Ann Kim