Patents by Inventor Yousuke Kaname

Yousuke Kaname has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9444319
    Abstract: An electric rotating machine includes a power transmission mechanism and an armature. The power transmission mechanism is equipped with a first, a second, and a third rotor. The first rotor includes n soft-magnetic members. The second rotor includes k soft-magnetic members. Note that n and k are an integer more than one. The third rotor is made up of magnets whose number of pole pairs is m where m is an integer more than or equal to one. The armature faces the third rotor. The first, second, and third rotors are arranged so as to establish a magnetic coupling among them. The soft-magnetic members of the first and second rotors and the magnets of the third rotor meet a relation of 2m=|k±n|. This arrangement is capable of achieving the transmission of power regardless of electric energization of the armature.
    Type: Grant
    Filed: September 19, 2014
    Date of Patent: September 13, 2016
    Assignee: DENSO CORPORATION
    Inventors: Tatsuya Tonari, Shin Kusase, Hidenori Katou, Yousuke Kaname, Naoto Sakurai
  • Publication number: 20150076948
    Abstract: A power transmission apparatus working to magnetically transmit power is provided which includes a first rotor including n soft-magnetic members, a second rotor including k soft-magnetic members, and a third rotor including magnets whose number of pole pairs is m where m is an integer more than or equal to one, the number of the magnets meeting a relation of 2m=|k±n| where n and k are an integer more than one. The first rotor, the second rotor, and the third rotor are arranged in magnetic coupling with each other. The soft-magnetic members of each of the first rotor and the second rotor are arranged at intervals away from each other, thereby minimizing the leakage of magnetic flux flowing from one of the soft-magnetic members to another in each of the first and second rotor to ensure the stability in operation of the power transmission mechanism.
    Type: Application
    Filed: September 11, 2014
    Publication date: March 19, 2015
    Inventors: Hidenori KATOU, Tatsuya TONARI, Shin KUSASE, Yousuke KANAME, Naoto SAKURAI
  • Publication number: 20150075886
    Abstract: An electric rotating machine includes a power transmission mechanism and an armature. The power transmission mechanism is equipped with a first, a second, and a third rotor. The first rotor includes n soft-magnetic members. The second rotor includes k soft-magnetic members. Note that n and k are an integer more than one. The third rotor is made up of magnets whose number of pole pairs is m where m is an integer more than or equal to one. The armature faces the third rotor. The first, second, and third rotors are arranged so as to establish a magnetic coupling among them. The soft-magnetic members of the first and second rotors and the magnets of the third rotor meet a relation of 2m=|k±n|. This arrangement is capable of achieving the transmission of power regardless of electric energization of the armature.
    Type: Application
    Filed: September 19, 2014
    Publication date: March 19, 2015
    Inventors: Tatsuya TONARI, Shin KUSASE, Hidenori KATOU, Yousuke KANAME, Naoto SAKURAI
  • Patent number: 8860274
    Abstract: In a double-stator motor has a rotary shaft, an annular rotor is coupled with a rotary shaft. First and second three-phase stators are arranged inside and outside to the rotor in the radial direction and formed to generate first and second rotating magnetic fields in response to three-phase currents, respectively. The rotor has an even number of segment poles made of soft magnetic material and arranged mutually separately at positions of the rotor. The positions are equally distanced apart from the rotary shaft in the radial direction and in the circumferential direction. Each of the first and second three-phase stators has magnetic poles which are the same in the number of poles as the segment poles and the magnetic poles are positioned such that magnetomotive forces from the magnetic poles are faced to each other between the magnetic poles of the first and second three-phase stators.
    Type: Grant
    Filed: May 20, 2011
    Date of Patent: October 14, 2014
    Assignee: Denso Corporation
    Inventors: Shin Kusase, Yousuke Kaname, Naoto Sakurai
  • Publication number: 20130234553
    Abstract: A magnetic modulation motor includes an armature, a magnetic induction rotor, and a magnet rotor. The armature is provided with a multi-phase winding with m pole pairs. The magnetic induction rotor includes k magnetic paths. In the magnet rotor, 2n permanent magnets forming a polarity region with n pole pairs are separately and annularly placed. The armature, the magnet rotor, and the magnetic induction rotor are arranged in the order from a radially outer side to a radially inner side. In the magnetic induction rotor, the magnetic path has two ends projecting toward a magnetic flux entry and exit located at an outer diameter face of the magnetic induction rotor, and forms a magnetic flux path between the magnetic flux entry and exit. The magnet rotor includes magnetic flux penetration region magnetically penetrated by magnetic flux between each circumferentially adjacent two permanent magnets.
    Type: Application
    Filed: March 11, 2013
    Publication date: September 12, 2013
    Applicant: DENSO CORPORATION
    Inventors: Shin KUSASE, Yousuke KANAME, Naoto SAKURAI
  • Publication number: 20110285238
    Abstract: In a double-stator motor has a rotary shaft, an annular rotor is coupled with a rotary shaft. First and second three-phase stators are arranged inside and outside to the rotor in the radial direction and formed to generate first and second rotating magnetic fields in response to three-phase currents, respectively. The rotor has an even number of segment poles made of soft magnetic material and arranged mutually separately at positions of the rotor. The positions are equally distanced apart from the rotary shaft in the radial direction and in the circumferential direction. Each of the first and second three-phase stators has magnetic poles which are the same in the number of poles as the segment poles and the magnetic poles are positioned such that magnetomotive forces from the magnetic poles are faced to each other between the magnetic poles of the first and second three-phase stators.
    Type: Application
    Filed: May 20, 2011
    Publication date: November 24, 2011
    Applicant: DENSO CORPORATION
    Inventors: Shin KUSASE, Yousuke Kaname, Naoto Sakurai