Patents by Inventor Youxin Yuan

Youxin Yuan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7368526
    Abstract: Functionalized porous poly(aryl ether ketone) articles are prepared by reacting ketone groups in the backbone of poly(aryl ether ketone) polymer with a primary amine reagent. Preferred functional primary amines are primary aliphatic amines or substituted hydrazines containing one or more target functional groups including polar groups, such as hydroxyl groups, ˜OH, amino groups, ˜NH2, ˜NHR, ˜NRR?, and ethylene oxide groups, ˜OCH2CH2—, negatively or positively charged ionic groups, such as ˜SO3?, ˜COO?, and ˜NH4+ groups, hydrophobic groups such as siloxane or perfluorcarbone groups, and non-polar groups, such as linear or branched hydrocarbon groups. The functionalized porous poly(aryl ether ketone) article can be prepared by reacting primary amine with a pre-formed, shaped porous poly(aryl ether ketone) article or by functionalizing the surface of a non-porous precursor article that is subsequently converted into a porous article.
    Type: Grant
    Filed: October 10, 2006
    Date of Patent: May 6, 2008
    Assignee: Porogen Corporation
    Inventors: Youxin Yuan, Yong Ding
  • Patent number: 7229580
    Abstract: The preparation and use of novel porous poly(aryl ether) articles is disclosed. The porous articles are prepared from blends of poly(aryl ether) polymers with polyimides by selectively decomposing the polyimide phase. The preferred reagents used to decompose the polyimide phase include monoethanolamine and tetramethylammonium hydroxide. The porous articles can be configured as a single layer or as a multilayer article. The porous articles of the present invention are unique that at least one of the layers exhibits a narrow pore size distribution. The articles of the present invention can be used as a porous media for a broad range of applications, including porous membranes for fluid separations, such as microfiltration, ultrafiltration, and gas separation, as a battery separators, and as a sorption media.
    Type: Grant
    Filed: April 30, 2004
    Date of Patent: June 12, 2007
    Assignee: PoroGen Corporation
    Inventor: Youxin Yuan
  • Publication number: 20070129529
    Abstract: Functionalized porous poly(aryl ether ketone) articles are prepared by reacting ketone groups in the backbone of poly(aryl ether ketone) polymer with a primary amine reagent. Preferred functional primary amines are primary aliphatic amines or substituted hydrazines containing one or more target functional groups including polar groups, such as hydroxyl groups, ˜OH, amino groups, ˜NH2, ˜NHR, ˜NRR?, and ethylene oxide groups, ˜OCH2CH2—, negatively or positively charged ionic groups, such as ˜SO3?, ˜COO?, and ˜NH4+groups, hydrophobic groups such as siloxane or perfluorcarbone groups, and non-polar groups, such as linear or branched hydrocarbon groups. The functionalized porous poly(aryl ether ketone) article can be prepared by reacting primary amine with a pre-formed, shaped porous poly(aryl ether ketone) article or by functionalizing the surface of a non-porous precursor article that is subsequently converted into a porous article.
    Type: Application
    Filed: October 10, 2006
    Publication date: June 7, 2007
    Inventors: Youxin Yuan, Yong Ding
  • Patent number: 7176273
    Abstract: Functionalized porous poly(aryl ether ketone) articles are prepared by reacting ketone groups in the backbone of poly(aryl ether ketone) polymer with a primary amine reagent. Preferred functional primary amines are primary aliphatic amines or substituted hydrazines containing one or more target functional groups including polar groups, such as hydroxyl groups, ˜OH, amino groups, ˜NH2, ˜NHR, ˜NRR?, and ethylene oxide groups, ˜OCH2CH2—, negatively or positively charged ionic groups, such as ˜SO3?, ˜COO?, and ˜NH4+ groups, hydrophobic groups such as siloxane or perfluorcarbone groups, and non-polar groups, such as linear or branched hydrocarbon groups. The functionalized porous poly(aryl ether ketone) article can be prepared by reacting primary amine with a pre-formed, shaped porous poly(aryl ether ketone) article or by functionalizing the surface of a non-porous precursor article that is subsequently converted into a porous article.
    Type: Grant
    Filed: November 3, 2004
    Date of Patent: February 13, 2007
    Assignee: PoroGen LLC
    Inventors: Youxin Yuan, Yong Ding
  • Publication number: 20060094852
    Abstract: Functionalized porous poly(aryl ether ketone) articles are prepared by reacting ketone groups in the backbone of poly(aryl ether ketone) polymer with a primary amine reagent. Preferred functional primary amines are primary aliphatic amines or substituted hydrazines containing one or more target functional groups including polar groups, such as hydroxyl groups, ˜OH, amino groups, ˜NH2, ˜NHR, ˜NRR?, and ethylene oxide groups, ˜OCH2CH2—, negatively or positively charged ionic groups, such as ˜SO3?, ˜COO?, and ˜NH4+ groups, hydrophobic groups such as siloxane or perfluorcarbone groups, and non-polar groups, such as linear or branched hydrocarbon groups. The functionalized porous poly(aryl ether ketone) article can be prepared by reacting primary amine with a pre-formed, shaped porous poly(aryl ether ketone) article or by functionalizing the surface of a non-porous precursor article that is subsequently converted into a porous article.
    Type: Application
    Filed: November 3, 2004
    Publication date: May 4, 2006
    Inventors: Youxin Yuan, Yong Ding
  • Patent number: 6987163
    Abstract: The invention relates to a modified polybenzimidazole (PBI), membranes that are fabricated from these polymers, and their use in electrochemical applications. These membranes have high ionic conductivity and are suitable for solid polymer electrolytes in electrochemical applications, especially for high temperature polymer electrolyte membrane (PEM) fuel cells.
    Type: Grant
    Filed: August 7, 2002
    Date of Patent: January 17, 2006
    Assignee: Research Foundation of the State University of New York
    Inventors: Israel Cabasso, Youxin Yuan, Frederick E. Johnson
  • Patent number: 6887408
    Abstract: Porous poly(aryl ether ketone) (PAEK) articles are prepared from PAEK/polyimide blends by selective chemical decomposition and subsequent removal of the polyimide phase. Porous PAEK articles exhibit highly interconnected pore structure and a narrow pore size distribution. The porous PAEK articles of the present invention can be utilized as a porous media for a broad range of applications, including membranes for fluid separations, such as microfiltration, ultrafiltration, nanofiltration, and as a sorption media.
    Type: Grant
    Filed: April 30, 2004
    Date of Patent: May 3, 2005
    Assignee: PoroGen LLC
    Inventor: Youxin Yuan
  • Publication number: 20040222169
    Abstract: Porous poly(aryl ether ketone) Membranes, Processes for Their Preparation and Use Thereof Porous poly(aryl ether ketone) (PAEK) articles are prepared from PAEK/polyimide blends by selective chemical decomposition and subsequent removal of the polyimide phase. Porous PAEK articles exhibit highly interconnected pore structure and a narrow pore size distribution. The porous PAEK articles of the present invention can be utilized as a porous media for a broad range of applications, including membranes for fluid separations, such as microfiltration, ultrafiltration, nanofiltration, and as a sorption media.
    Type: Application
    Filed: April 30, 2004
    Publication date: November 11, 2004
    Inventor: Youxin Yuan
  • Publication number: 20040222148
    Abstract: The preparation and use of novel porous poly(aryl ether) articles is disclosed. The porous articles are prepared from blends of poly(aryl ether) polymers with polyimides by selectively decomposing the polyimide phase. The preferred reagents used to decompose the polyimide phase include monoethanolamine and tetramethylammonium hydroxide. The porous articles can be configured as a single layer or as a multilayer article. The porous articles of the present invention are unique that at least one of the layers exhibits a narrow pore size distribution. The articles of the present invention can be used as a porous media for a broad range of applications, including porous membranes for fluid separations, such as microfiltration, ultrafiltration, and gas separation, as a battery separators, and as a sorption media.
    Type: Application
    Filed: April 30, 2004
    Publication date: November 11, 2004
    Inventor: Youxin Yuan
  • Publication number: 20040028976
    Abstract: The invention relates to a modified polybenzimidazole (PBI), membranes that are fabricated from these polymers, and their use in electrochemical applications. These membranes have high ionic conductivity and are suitable for solid polymer electrolytes in electrochemical applications, especially for high temperature polymer electrolyte membrane (PEM) fuel cells.
    Type: Application
    Filed: August 7, 2002
    Publication date: February 12, 2004
    Inventors: Israel Cabasso, Youxin Yuan, Frederick E. Johnson
  • Publication number: 20030161781
    Abstract: It is MPPE based polymeric carbon materials with high electric and gas conductivity, large surface area with narrow pore size distribution, good mechanical strength, versatile applications and ease of manufacturing. The carbon material can be in the form of carbon powder, carbon fiber reinforced sheets or other types of carbon/carbon composites. This carbon material can be readily utilized in/as base materials for catalysts, adsorbent, water treatment materials, electrodes for double layer capacitors, fuel gas storage materials and fuel cell gas diffusion electrodes. The carbon is produced by oxidation of poly(phenylene ether) (PPE) in air or other oxygen containing atmospheres at temperatures near the glass transition temperature of PPE, followed by carbonization of the oxidized material in an inert atmosphere at elevated temperatures (400-3000° C.) and activating the carbon materials with steam, carbon dioxide, oxygen containing gases, organic or inorganic bases and organic or inorganic acids.
    Type: Application
    Filed: October 1, 2001
    Publication date: August 28, 2003
    Inventors: Israel Cabasso, Han Liu, Suoding Li, Youxin Yuan
  • Patent number: 6103414
    Abstract: Solid polymer membranes comprised of a high charge density sulfonated poly (phenylene oxide) blended with poly(vinylidene fluoride) in varied ratios have improved membrane characteristics. These membranes are inexpensive and possess very high ionic conductivity, and thus are suitable for solid polymer electrolytes in electrochemical applications, especially for the polymer electrolyte membrane (PEM) fuel cell, the electrolyte double-layer capacitor, and the rechargeable zinc-halide cell. These membranes enhance the performance of these devices.
    Type: Grant
    Filed: August 13, 1998
    Date of Patent: August 15, 2000
    Assignee: The Research Foundation of State University of the New York
    Inventors: Israel Cabasso, Youxin Yuan, Cortney Mittelsteadt
  • Patent number: 5989742
    Abstract: Solid polymer membranes comprised of a high charge density sulfonated poly (phenylene oxide) blended with poly(vinylidene fluoride) in varied ratios have improved membrane characteristics. These membranes possess very high ionic conductivity, are inexpensive and suitable for solid polymer electrolytes in electrochemical applications, especially for the polymer electrolyte membrane (PEM) fuel cell. PEM fuel cell assemblies with this membrane have enhanced performance.
    Type: Grant
    Filed: October 4, 1996
    Date of Patent: November 23, 1999
    Assignee: The Research Foundation of State University of New York
    Inventors: Israel Cabasso, Youxin Yuan, Cortney Mittelsteadt
  • Patent number: 5783325
    Abstract: All electrocatalytic gas diffusion electrode for fuel cells and a process for its preparation is disclosed. The electrode comprises an anistropic gas diffusion layer and a catalytic layer. The gas diffusion layer is made of a porous carbon matrix through which carbon particles and poly(vinylidene) fluoride are distributed so that the matrix is homogeneously porous in a direction lateral to gas flow and asymmetrically porous to gases in the direction of the gas flow. The porosity of the gas diffusion layer decreases in the direction of gas flow. The catalytic layer is made of a coagulated ink suspension containing catalytic carbon particles and a thermoplastic polymer selected from polyethersulfone, poly(vinylidene fluoride) and sulfonated polysulfone and covers the small pore surface of the gas diffusion layer. The gas diffusion layer has a thickness between 50 .mu.m and 300 .mu.m. The catalytic layer has thickness between 7 .mu.m and 50 .mu.m and a metal catalyst loading between 0.2 mg/cm.sup.2 and 0.
    Type: Grant
    Filed: August 27, 1996
    Date of Patent: July 21, 1998
    Assignee: The Research Foundation of State of New York
    Inventors: Israel Cabasso, Youxin Yuan, Xiao Xu