Patents by Inventor Yu-Chiao Chen

Yu-Chiao Chen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240130686
    Abstract: A coupled physiological signal measuring device is provided. The coupled physiological signal measuring device includes at least two measuring electrodes, a signal processing unit and a multiplex feedback circuit unit. The measuring electrodes are used to obtain a real-time physiological signal through measurement. The signal processing unit includes a discharge control element. If an electrostatic surge of the real-time physiological signal meets a condition, a discharge control signal is outputted. The multiplex feedback circuit unit is used to discharge the measuring electrodes according to the discharge control signal.
    Type: Application
    Filed: January 20, 2023
    Publication date: April 25, 2024
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Yun-Yi HUANG, Yu-Chiao TSAI, Hung-Hsien KO, Heng-Yin CHEN
  • Publication number: 20240132923
    Abstract: Provided is a recombinant microorganism including at least two genes for producing itaconic acid and its derived monomers, and the at least two genes are located on the same expression vector. The at least two genes include one encoding cis-aconitic acid decarboxylase and the other one encoding aconitase, and the genome of the recombinant microorganism includes a gene encoding the molecular chaperone protein GroELS. Also provided is a method for producing itaconic acid by using the microorganism.
    Type: Application
    Filed: March 22, 2023
    Publication date: April 25, 2024
    Inventors: I-Son NG, Jo-Shu CHANG, Chuan-Chieh HSIANG, Yeong-Chang CHEN, Yu-Chiao LIU, Chia-Wei TSAI
  • Publication number: 20240125003
    Abstract: A method of growing a single crystal ingot includes growing a single crystal silicon ingot from a silicon melt in a crucible within an inner chamber, adding a volatile dopant into a feed tube, positioning the feed tube within an inner chamber at a first height relative to a surface of the melt, adjusting the feed tube within the inner chamber to a second height at a speed rate, and heating the volatile dopant to form a gaseous dopant as the feed tube is moved from the first height to the second height at the speed rate. Each of the second height and the speed rate are selected to control a vaporization rate of the volatile dopant. The method also includes introducing dopant species into the melt while growing the ingot by contacting the surface of the melt with the gaseous dopant.
    Type: Application
    Filed: October 13, 2022
    Publication date: April 18, 2024
    Inventors: Chieh HU, Hsien-Ta TSENG, Chun-Sheng WU, William Lynn LUTER, Liang-Chin CHEN, Sumeet BHAGAVAT, Carissima Marie HUDSON, Yu-Chiao Wu
  • Publication number: 20240125004
    Abstract: A method of growing a single crystal ingot includes growing a single crystal silicon ingot from a silicon melt in a crucible within an inner chamber, adding a volatile dopant into a feed tube, positioning the feed tube within an inner chamber at a first height relative to a surface of the melt, adjusting the feed tube within the inner chamber to a second height at a speed rate, and heating the volatile dopant to form a gaseous dopant as the feed tube is moved from the first height to the second height at the speed rate. Each of the second height and the speed rate are selected to control a vaporization rate of the volatile dopant. The method also includes introducing dopant species into the melt while growing the ingot by contacting the surface of the melt with the gaseous dopant.
    Type: Application
    Filed: October 13, 2022
    Publication date: April 18, 2024
    Inventors: Chieh HU, Hsien-Ta TSENG, Chun-Sheng WU, William Lynn LUTER, Liang-Chin CHEN, Sumeet BHAGAVAT, Carissima Marie HUDSON, Yu-Chiao Wu
  • Publication number: 20240115151
    Abstract: A physiological signal measurement system, a physiological signal measurement method, and a mobile device protective case are provided. The physiological signal measurement system includes a first electrode, a second electrode, a reference electrode, an impedance front-end circuit module and a dynamic signal matching module. The first electrode, the second electrode and the reference electrode are used to obtain a first sensing signal and a second sensing signal. The impedance front-end circuit module is used to detect a first impedance of the first electrode and a second impedance of the second electrode, and obtain an original differential signal according to the first sensing signal and the second sensing signal. The dynamic signal matching module is used to obtain a calibration sequence according to the first impedance, the second impedance and the original differential signal, and obtain a compensated calibration sequence according to the calibration sequence and the original differential signal.
    Type: Application
    Filed: October 5, 2023
    Publication date: April 11, 2024
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Yun-Yi HUANG, Yu-Chiao TSAI, Chun LIU, Heng-Yin CHEN
  • Patent number: 9653408
    Abstract: A high-frequency package comprises a die; a plurality of leads; and a die pad; wherein a surface of the die pad is lower than top surfaces of the plurality of leads, the die is disposed on the die pad with the lower surface, such that a top surface of the die is substantially aligned with the top surfaces of the plurality of leads.
    Type: Grant
    Filed: October 14, 2015
    Date of Patent: May 16, 2017
    Assignee: WIN Semiconductors Corp.
    Inventors: Chih-Wen Huang, Yu-Chiao Chen
  • Publication number: 20170047299
    Abstract: A high-frequency package comprises a die; a plurality of leads; and a die pad; wherein a surface of the die pad is lower than top surfaces of the plurality of leads, the die is disposed on the die pad with the lower surface, such that a top surface of the die is substantially aligned with the top surfaces of the plurality of leads.
    Type: Application
    Filed: October 14, 2015
    Publication date: February 16, 2017
    Inventors: Chih-Wen Huang, Yu-Chiao Chen
  • Patent number: 9515032
    Abstract: A high-frequency package comprises a ground lead, connected to a die, occupying a side of the high-frequency package, wherein a slot is formed within the ground lead; and a signal lead, connected to the die, disposed within the slot; wherein the ground lead surrounds the signal lead, and the ground lead and the signal lead form as a ground-signal-ground structure.
    Type: Grant
    Filed: October 13, 2015
    Date of Patent: December 6, 2016
    Assignee: WIN Semiconductors Corp.
    Inventors: Chih-Wen Huang, Yu-Chiao Chen