Patents by Inventor YU-CHIEH LU

YU-CHIEH LU has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12235586
    Abstract: Impurities in a liquefied solid fuel utilized in a droplet generator of an extreme ultraviolet photolithography system are removed from vessels containing the liquefied solid fuel. Removal of the impurities increases the stability and predictability of droplet formation which positively impacts wafer yield and droplet generator lifetime.
    Type: Grant
    Filed: August 7, 2023
    Date of Patent: February 25, 2025
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Cheng-Hao Lai, Ming-Hsun Tsai, Hsin-Feng Chen, Wei-Shin Cheng, Yu-Kuang Sun, Cheng-Hsuan Wu, Yu-Fa Lo, Shih-Yu Tu, Jou-Hsuan Lu, Shang-Chieh Chien, Li-Jui Chen, Heng-Hsin Liu
  • Publication number: 20250056809
    Abstract: A device includes a multi-layer stack, a channel layer, a ferroelectric layer and buffer layers. The multi-layer stack is disposed on a substrate and includes a plurality of conductive layers and a plurality of dielectric layers stacked alternately. The channel layer penetrates through the plurality of conductive layers and the plurality of dielectric layers. The ferroelectric layer is disposed between the channel layer and each of the plurality of conductive layers and the plurality of dielectric layers. The buffer layers include a metal oxide, and one of the buffer layers is disposed between the ferroelectric layer and each of the plurality of dielectric layers.
    Type: Application
    Filed: October 29, 2024
    Publication date: February 13, 2025
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chun-Chieh Lu, Georgios Vellianitis, Marcus Johannes Henricus Van Dal, Sai-Hooi Yeong, Yu-Ming Lin
  • Publication number: 20250056877
    Abstract: A semiconductor structure includes a substrate, an isolation structure disposed in the substrate, and a hybrid structure disposed over the isolation structure. The hybrid structure is substantially conformal with respect to a profile of the isolation structure. The hybrid structure includes an oxide component, a nitride component surrounding the oxide component, and a first polysilicon component alongside the nitride component. The nitride component includes a first upper surface closed to the first polysilicon component, and a second upper surface distal to the first polysilicon component. The second upper surface is lower than the first upper surface.
    Type: Application
    Filed: October 30, 2024
    Publication date: February 13, 2025
    Inventors: HUNG-SHU HUANG, JHIH-BIN CHEN, MING CHYI LIU, YU-CHANG JONG, CHIEN-CHIH CHOU, JHU-MIN SONG, YI-KAI CIOU, TSUNG-CHIEH TSAI, YU-LUN LU
  • Patent number: 9846161
    Abstract: A novel quantum dot capable of near infrared emissions at wavelengths of 750-1100 is made by forming solid solutions of metal sulfide, metal selenide or metal sulfide selenide by incorporating a suitable amount of an additional metallic element or elements to provide an emission wavelength in the range of 750 nm to 1100 nm. The quantum dots may be enabled for bioconjugation and may be used in a method for tissue imaging and analyte detection.
    Type: Grant
    Filed: September 12, 2014
    Date of Patent: December 19, 2017
    Assignee: DREXEL UNIVERSITY
    Inventors: Wei-Heng Shih, Wan Y. Shih, Hui Li, Ian McDonald, Andrew Kopek, Ryan O'Malley, Yu-Chieh Lu
  • Patent number: 9050655
    Abstract: The present invention relates to a continuous reactor a method for manufacturing nanoparticles. The reactor of the present invention includes: a plurality of first inputs for individually inputting a plurality of reagents; a first mixing part connected to the first inputs to mix the reagents; N number of first reaction units, each comprising a plurality of first diverging channels and a first converging channel to form a channel having the first diverging channels and the first converging channels alternately connected to one another in series for N times of diverging-converging actions, wherein N?1, and the first diverging channels of a 1st one of the first reaction units are connected to the first mixing part; and a first output connected to the first converging channel of an Nth one of the first reaction units, so as to output a product of nanoparticles.
    Type: Grant
    Filed: November 21, 2012
    Date of Patent: June 9, 2015
    Assignee: National Tsing Hua University
    Inventors: Kan-Sen Chou, Yu-Chun Chang, Yi-Chu Chen, Yu-Chieh Lu
  • Publication number: 20150024408
    Abstract: A novel quantum dot capable of near infrared emissions at wavelengths of 750-1100 is made by forming solid solutions of metal sulfide, metal selenide or metal sulfide selenide by incorporating a suitable amount of an additional metallic element or elements to provide an emission wavelength in the range of 750 nm to 1100 nm. The quantum dots may be enabled for bioconjugation and may be used in a method for tissue imaging and analyte detection.
    Type: Application
    Filed: September 12, 2014
    Publication date: January 22, 2015
    Applicant: DREXEL UNIVERSITY
    Inventors: WEI-HENG SHIH, WAN Y. SHIH, HUI LI, IAN MCDONALD, ANDREW KOPEK, RYAN O'MALLEY, YU-CHIEH LU
  • Patent number: 8865477
    Abstract: A novel quantum dot capable of near infrared emissions at wavelengths of 750-1100 is made by forming solid solutions of metal sulfide, metal selenide or metal sulfide selenide by incorporating a suitable amount of an additional metallic element or elements to provide an emission wavelength in the range of 750 nm to 1100 nm. The quantum dots may be enabled for bioconjugation and may be used in a method for tissue imaging and analyte detection.
    Type: Grant
    Filed: April 22, 2009
    Date of Patent: October 21, 2014
    Assignee: Drexel University
    Inventors: Wei-Heng Shih, Wan Y. Shih, Hui Li, Ian McDonald, Andrew Kopek, Ryan O'Malley, Yu-Chieh Lu
  • Publication number: 20140047950
    Abstract: The present invention relates to a continuous reactor a method for manufacturing nanoparticles. The reactor of the present invention includes: a plurality of first inputs for individually inputting a plurality of reagents; a first mixing part connected to the first inputs to mix the reagents; N number of first reaction units, each comprising a plurality of first diverging channels and a first converging channel to form a channel having the first diverging channels and the first converging channels alternately connected to one another in series for N times of diverging-converging actions, wherein N?1, and the first diverging channels of a 1st one of the first reaction units are connected to the first mixing part; and a first output connected to the first converging channel of an Nth one of the first reaction units, so as to output a product of nanoparticles.
    Type: Application
    Filed: November 21, 2012
    Publication date: February 20, 2014
    Applicant: National Tsing Hua University
    Inventors: Kan-Sen CHOU, Yu-Chun CHANG, Yi-Chu CHEN, Yu-Chieh LU
  • Publication number: 20090286257
    Abstract: A novel quantum dot capable of near infrared emissions at wavelengths of 750-1100 is made by forming solid solutions of metal sulfide, metal selenide or metal sulfide selenide by incorporating a suitable amount of an additional metallic element or elements to provide an emission wavelength in the range of 750 nm to 1100 nm. The quantum dots may be enabled for bioconjugation and may be used in a method for tissue imaging and analyte detection.
    Type: Application
    Filed: April 22, 2009
    Publication date: November 19, 2009
    Applicant: DREXEL UNIVERSITY
    Inventors: WEI-HENG SHIH, WAN Y. SHIH, HUI LI, IAN MACDONALD, ANDREW KOPEK, RYAN O'MALLEY, YU-CHIEH LU
  • Publication number: 20080064767
    Abstract: The present invention relates to a high-concentration nanoscale silver colloidal solution and the preparing process thereof. The colloidal solution of the present invention comprises a high content of silver particles, i.e. approximately 1.5 wt %. The mean size of the nanoscale silver is less than 10 nm. In the preparing process, silver salt, ionic chelating agent, stabilizing agent, reducing agent, solvent and reaction accelerator are homogeneously mixed together. The increase of reaction temperature by external heat source accelerates completed reaction. By using the specified reaction accelerator and chelating agent and under the operating condition of the present invention, high-density silver colloidal solution is obtained while inhibiting particle aggregation. Therefore, the resulting nanoscale silver colloidal solution contains very small-sized particles and the stability thereof is satisfactory.
    Type: Application
    Filed: September 11, 2006
    Publication date: March 13, 2008
    Inventors: Kan-Sen Chou, Yu-chieh Lu