Patents by Inventor Yu-Chih CHIANG

Yu-Chih CHIANG has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240155845
    Abstract: A method of forming a ferroelectric random access memory (FeRAM) device includes: forming a layer stack over a substrate, where the layer stack includes alternating layers of a first dielectric material and a word line (WL) material; forming first trenches extending vertically through the layer stack; filling the first trenches, where filling the first trenches includes forming, in the first trenches, a ferroelectric material, a channel material over the ferroelectric material, and a second dielectric material over the channel material; after filling the first trenches, forming second trenches extending vertically through the layer stack, the second trenches being interleaved with the first trenches; and filling the second trenches, where filling the second trenches includes forming, in the second trenches, the ferroelectric material, the channel material over the ferroelectric material, and the second dielectric material over the channel material.
    Type: Application
    Filed: January 16, 2024
    Publication date: May 9, 2024
    Inventors: TsuChing Yang, Hung-Chang Sun, Kuo Chang Chiang, Sheng-Chih Lai, Yu-Wei Jiang
  • Publication number: 20240136444
    Abstract: A flash memory device and method of making the same are disclosed. The flash memory device is located on a substrate and includes a floating gate electrode, a tunnel dielectric layer located between the substrate and the floating gate electrode, a smaller length control gate electrode and a control gate dielectric layer located between the floating gate electrode and the smaller length control gate electrode. The length of a major axis of the smaller length control gate electrode is less than a length of a major axis of the floating gate electrode.
    Type: Application
    Filed: December 22, 2023
    Publication date: April 25, 2024
    Inventors: Yu-Chu Lin, Chi-Chung Jen, Wen-Chih Chiang, Yi-Ling Liu, Huai-Jen Tung, Keng-Ying Liao
  • Publication number: 20240114690
    Abstract: A method of forming a three-dimensional (3D) memory device includes: forming, over a substrate, a layer stack having alternating layers of a first conductive material and a first dielectric material; forming trenches extending vertically through the layer stack from an upper surface of the layer stack distal from the substrate to a lower surface of the layer stack facing the substrate; lining sidewalls and bottoms of the trenches with a memory film; forming a channel material over the memory film, the channel material including an amorphous material; filling the trenches with a second dielectric material after forming the channel material; forming memory cell isolation regions in the second dielectric material; forming source lines (SLs) and bit lines (BLs) that extend vertically in the second dielectric material on opposing sides of the memory cell isolation regions; and crystallizing first portions of the channel material after forming the SLs and BLs.
    Type: Application
    Filed: December 1, 2023
    Publication date: April 4, 2024
    Inventors: TsuChing Yang, Hung-Chang Sun, Kuo Chang Chiang, Sheng-Chih Lai, Yu-Wei Jiang
  • Publication number: 20240088291
    Abstract: A transistor includes an insulating layer, a source region, a drain region, a channel layer, a ferroelectric layer, and a gate electrode. The source region and the drain region are respectively disposed on and in physical contact with two opposite sidewalls of the insulating layer. A thickness of the source region, a thickness of the drain region, and a thickness of the insulating layer are substantially the same. The channel layer is disposed on the insulating layer, the source region, and the drain region. The ferroelectric layer is disposed over the channel layer. The gate electrode is disposed on the ferroelectric layer.
    Type: Application
    Filed: November 15, 2023
    Publication date: March 14, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hung-Chang Sun, Sheng-Chih Lai, Yu-Wei Jiang, Kuo-Chang Chiang, TsuChing Yang, Feng-Cheng Yang, Chung-Te Lin
  • Publication number: 20240069067
    Abstract: A test device includes a power compensation module and a test module. The power compensation module receives AC power generated by a device under test to generate DC power to the device under test. The test module provides a plurality of test signals and a test mode to the device under test for testing the device under test.
    Type: Application
    Filed: December 5, 2022
    Publication date: February 29, 2024
    Inventors: Wei-Chih HUNG, Ying-Ping CHIANG, Yu-Ren RUAN, Chia-Hao WU
  • Publication number: 20230303424
    Abstract: The present invention provides a biological glass fiber for regenerative medical materials, comprising a biological glass or a biologically-inert glass made of a glass chemical composition. The glass chemical composition comprises in weight percentage, 5 to 25 wt% Na2O, 45 to 67 wt% SiO2, 15 to 25 wt% CaO, 2 to 6 wt% P2O5, 1 to 8 wt% MgO, 8 to 12.5 wt% K2O, 0.1 to 5 wt% total combined of non-toxic elements found in Group 5 and non-toxic elements found in Transition Metal Groups 3B, 4B and 5B, based on 100 wt% of the glass chemical composition; wherein the biological glass fiber forms a fiber configuration. The biological glass fiber is a soluble, resorbable, light transmittable and controllable absorption time regenerative material, and the biological glass fiber can mediate: therapeutic lymphangiogenesis, stem cell regeneration, bone cell regeneration and neurovascular regeneration, or it can be used as a cell carrier.
    Type: Application
    Filed: March 17, 2022
    Publication date: September 28, 2023
    Inventors: Luke Lu, Thomas J. Loretz, Hsiao Sen Tseng, Yu-Chih Chiang
  • Publication number: 20140107653
    Abstract: An osteotome includes a connector, a first arm, a second arm, a third arm, a fourth arm and a cutting head. A coordinate system has an X axis, a Y axis, and a Z axis. The X axis, the Y axis and the Z axis are perpendicular to each other and intersect at an original point. The connector extends along the Y axis. The first arm, extending along the Y axis, connects to the second arm, extending along the plane with the X and Y axes. An angle between the first and second arms is within a range between 125 to 145 degrees. The third and fourth arms respectively extend along the Z axis and the X axis. The cutting head is parallel to the X axis and the Y axis so as to easily control the insertion angle of the osteotome for the patients with smaller face or smaller oral cavity.
    Type: Application
    Filed: October 16, 2012
    Publication date: April 17, 2014
    Applicant: SUNNYTEC ELECTRONICS CO., LTD.
    Inventors: Chun-Pin LIN, Hao-Hung CHANG, Yi-Chao HUANG, Yu-Chih CHIANG, Hann-Kuang CHEN, Chao-Ping LEE