Patents by Inventor Yu Chih Huang

Yu Chih Huang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210165315
    Abstract: An overlay mark includes a first, a second, a third, and a fourth component. The first component is located in a first region of the first overlay mark and includes a plurality of gratings that extend in a first direction. The second component is located in a second region of the first overlay mark and includes a plurality of gratings that extend in the first direction. The third component is located in a third region of the first overlay mark and includes a plurality of gratings that extend in a second direction different from the first direction. The fourth component is located in a fourth region of the first overlay mark and includes a plurality of gratings that extend in the second direction. The first region is aligned with the second region. The third region is aligned with the fourth region.
    Type: Application
    Filed: February 9, 2021
    Publication date: June 3, 2021
    Inventors: Yu-Ching Lee, Te-Chih Huang, Yu-Piao Fang
  • Publication number: 20210151580
    Abstract: A method for fabricating semiconductor device includes the steps of: forming a gate structure on a substrate; forming a first spacer and a second spacer around the gate structure; forming a recess adjacent to two sides of the second spacer; performing a cleaning process to trim the second spacer for forming a void between the first spacer and the substrate; and forming an epitaxial layer in the recess.
    Type: Application
    Filed: January 28, 2021
    Publication date: May 20, 2021
    Inventors: Wei-Chih Chuang, Chia-Jong Liu, Kuang-Hsiu Chen, Chung-Ting Huang, Chi-Hsuan Tang, Kai-Hsiang Wang, Bing-Yang Jiang, Yu-Lin Cheng, Chun-Jen Chen, Yu-Shu Lin, Jhong-Yi Huang, Chao-Nan Chen, Guan-Ying Wu
  • Publication number: 20210134853
    Abstract: A method for manufacturing a display device is disclosed, the method at least includes the following step: Firstly, a temporary substrate is provided, a hydrogen containing structure is formed on the temporary substrate, a polymer film is formed on the hydrogen containing structure, and a display element is formed on the polymer film. Afterwards, a laser beam process is performed, to focus a laser beam on the hydrogen containing structure, and the temporary substrate is then removed.
    Type: Application
    Filed: November 5, 2019
    Publication date: May 6, 2021
    Inventors: Hsin-Hao Huang, Sheng-Hui Chiu, Yu-Chih Tseng
  • Publication number: 20210125802
    Abstract: Example of backlit switches are described. In an example, a backlit switch includes a printed circuit board (PCB) and a dome-type button coupled to the PCB. The dome-type button has a light transmitting portion. A light source is mounted on a first side of the PCB, and a tact switch is mounted on a second side of the PCB that is opposite to the first side. Further, a projection is provided to trigger the tact switch, in response to pressing of the dome-type button.
    Type: Application
    Filed: June 21, 2018
    Publication date: April 29, 2021
    Applicant: Hewlett-Packard Development Company, L.P.
    Inventors: Yu Chen So, Weiming Tseng, Chi-Chih Huang, Lien-Chia Chiu
  • Patent number: 10990137
    Abstract: A hinge mechanism is provided. The hinge mechanism includes a base, a magnetic assembly, a torque assembly, and a calibration component. The magnetic assembly is disposed in the base. The torque assembly is connected to the base, and includes a substrate, a first cylinder, and a second cylinder. The substrate is disposed in the base. The first cylinder penetrates the substrate, and is rotatable relative to the substrate. The second cylinder penetrates the substrate, and is rotatable relative to the substrate and the first cylinder. The calibration component is disposed between the magnetic assembly and the torque assembly, and abuts an inner wall of the first cylinder, and an inner wall of the second cylinder.
    Type: Grant
    Filed: August 6, 2019
    Date of Patent: April 27, 2021
    Assignee: ACER INCORPORATED
    Inventors: Yu-Chin Huang, Hsueh-Chih Peng, Wen-Chieh Tai, Wen-Neng Liao, Kuang-Hua Lin
  • Patent number: 10990292
    Abstract: The present invention provides a flash memory controller, wherein the flash memory controller is arranged to access a flash memory module, the flash memory module includes a plurality of flash memory chips, the flash memory controller includes a buffer memory and a microcontroller, and the buffer memory is arranged to store an in-system programming (ISP) code. When the flash memory controller enters a power saving mode, the microcontroller disables a portion of the buffer memory to make at least one portion of the ISP code disappear; and when the flash memory controller enters a normal mode from the power saving mode, the microcontroller reads said at least one portion of the ISP code from N flash memory chips within the plurality of flash memory chips, wherein N is a positive integer greater than one.
    Type: Grant
    Filed: May 16, 2019
    Date of Patent: April 27, 2021
    Assignee: Silicon Motion, Inc.
    Inventors: Guan-Yao Huang, Yu-Chih Lin, Chang-Wei Shen
  • Publication number: 20210119837
    Abstract: A baseband system includes: an estimation and compensation circuit estimating frequency-independent non-ideal effects based on an original IQ signal pair, and compensating the original IQ signal pair based on a result of the estimation to obtain a compensated IQ signal pair; a channel estimation and equalization circuit performing channel estimation and equalization based on the compensated IQ signal pair to obtain an equalized IQ signal pair; and a tracking and compensation circuit obtaining a result of tracking of residual quantities of the aforesaid non-ideal effects based on the equalized IQ signal pair, and compensating the equalized IQ signal pair based on the result of the tracking to obtain an output IQ signal pair.
    Type: Application
    Filed: June 8, 2020
    Publication date: April 22, 2021
    Applicant: NATIONAL CHIAO TUNG UNIVERSITY
    Inventors: Zheng-Chun HUANG, Wei-Che LEE, Hung-Chih LIU, Chih-Wei JEN, Shyh-Jye JOU, Yu-Hwai TSENG
  • Publication number: 20210119851
    Abstract: A communication system includes a baseband circuit, a transmitting end circuit, and a receiving end circuit is disclosed. The transmitting end circuit includes a digital analog conversion circuit and a transmitting end filtering circuit. The receiving end circuit includes a receiving end amplifying circuit, a receiving end filtering circuit, and an analog digital conversion circuit. A first data signal is transmitted to the analog digital conversion circuit through the digital analog conversion circuit and the transmitting end filtering circuit, so that the baseband circuit obtains a first compensation parameter. A second data signal is transmitted to the receiving end filtering circuit, the receiving end amplifying circuit and the analog digital conversion circuit through the digital analog conversion circuit and the transmitting end filtering circuit, so that the baseband circuit obtains a second compensation parameter.
    Type: Application
    Filed: October 15, 2020
    Publication date: April 22, 2021
    Inventors: Zheng-Chun HUANG, Wei-Che LEE, Hung-Chih LIU, Chih-Wei JEN, Shyh-Jye JOU, Yu-Hwai TSENG
  • Publication number: 20210098636
    Abstract: A semiconductor package is provided. The semiconductor package includes a heat dissipation substrate including a first conductive through-via embedded therein; a sensor die disposed on the heat dissipation substrate; an insulating encapsulant laterally encapsulating the sensor die; a second conductive through-via penetrating through the insulating encapsulant; and a first redistribution structure and a second redistribution structure disposed on opposite sides of the heat dissipation substrate. The second conductive through-via is in contact with the first conductive through-via. The sensor die is located between the second redistribution structure and the heat dissipation substrate. The second redistribution structure has a window allowing a sensing region of the sensor die receiving light. The first redistribution structure is electrically connected to the sensor die through the first conductive through-via, the second conductive through-via and the second redistribution structure.
    Type: Application
    Filed: January 20, 2020
    Publication date: April 1, 2021
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chih-Hsuan Tai, Hao-Yi Tsai, Yu-Chih Huang, Chih-Hao Chang, Chia-Hung Liu, Ban-Li Wu, Ying-Cheng Tseng, Po-Chun Lin
  • Publication number: 20210091065
    Abstract: A semiconductor device includes passive electrical components in a substrate; and an interconnect structure over the passive electrical components, conductive features of the interconnect structure being electrically coupled to the passive electrical components. The conductive features of the interconnect structure includes a first conductive line over the substrate; a conductive bump over the first conductive line, where in a plan view, the conductive bumps has a first elongated shape and is entirely disposed within boundaries of the first conductive line; and a first via between the first conductive line and the conductive bump, the first via electrically connected to the first conductive line and the conductive bump, where in the plan view, the first via has a second elongated shape and is entirely disposed within boundaries of the conductive bump.
    Type: Application
    Filed: December 7, 2020
    Publication date: March 25, 2021
    Inventors: Ying-Cheng Tseng, Yu-Chih Huang, Chih-Hsuan Tai, Ting-Ting Kuo, Chi-Hui Lai, Ban-Li Wu, Chiahung Liu, Hao-Yi Tsai
  • Publication number: 20210074694
    Abstract: A semiconductor package includes an integrated passive device (IPD) including one or more passive devices over a first substrate; and metallization layers over and electrically coupled to the one or more passive devices, where a topmost metallization layer of the metallization layers includes a first plurality of conductive patterns; and a second plurality of conductive patterns interleaved with the first plurality of conductive patterns. The IPD also includes a first under bump metallization (UBM) structure over the topmost metallization layer, where the first UBM structure includes a first plurality of conductive strips, each of the first plurality of conductive strips electrically coupled to a respective one of the first plurality of conductive patterns; and a second plurality of conductive strips interleaved with the first plurality of conductive strips, each of the second plurality of conductive strips electrically coupled to a respective one of the second plurality of conductive patterns.
    Type: Application
    Filed: November 16, 2020
    Publication date: March 11, 2021
    Inventors: Yu-Chih Huang, Chi-Hui Lai, Ban-Li Wu, Ying-Cheng Tseng, Ting-Ting Kuo, Chih-Hsuan Tai, Hao-Yi Tsai, Chuei-Tang Wang, Chung-Shi Liu, Chen-Hua Yu, Chiahung Liu
  • Publication number: 20210057302
    Abstract: In an embodiment, a device includes: a sensor die having a first surface and a second surface opposite the first surface, the sensor die having an input/output region and a first sensing region at the first surface; an encapsulant at least laterally encapsulating the sensor die; a conductive via extending through the encapsulant; and a front-side redistribution structure on the first surface of the sensor die, the front-side redistribution structure being connected to the conductive via and the sensor die, the front-side redistribution structure covering the input/output region of the sensor die, the front-side redistribution structure having a first opening exposing the first sensing region of the sensor die.
    Type: Application
    Filed: November 9, 2020
    Publication date: February 25, 2021
    Inventors: Tsung-Hsien Chiang, Yu-Chih Huang, Ting-Ting Kuo, Chih-Hsuan Tai, Ban-Li Wu, Ying-Cheng Tseng, Chi-Hui Lai, Chiahung Liu, Hao-Yi Tsai, Chung-Shi Liu, Chen-Hua Yu
  • Publication number: 20200410198
    Abstract: A fingerprint sensor includes a die, a plurality of conductive structures, an encapsulant, a plurality of conductive patterns, a first dielectric layer, a second dielectric layer, and a redistribution structure. The die has an active surface and a rear surface opposite to the active surface. The conductive structures surround the die. The encapsulant encapsulates the die and the conductive structures. The conductive patterns are over the die and are electrically connected to the die and the conductive structures. Top surfaces of the conductive patterns are flat. The first dielectric layer is over the die and the encapsulant. A top surface of the first dielectric layer is coplanar with top surfaces of the conductive patterns. The second dielectric layer covers the first dielectric layer and the conductive patterns. The redistribution structure is over the rear surface of the die.
    Type: Application
    Filed: September 10, 2020
    Publication date: December 31, 2020
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chih-Hsuan Tai, Chih-Hua Chen, Hao-Yi Tsai, Yu-Chih Huang, Chia-Hung Liu, Ting-Ting Kuo, Ying-Cheng Tseng
  • Patent number: 10878073
    Abstract: A device package includes a sensor die, one or more additional dies adjacent the sensor die, and a molding compound encircling the sensor die and the one or more additional dies. The device package further includes redistribution layers over the sensor die, the one or more additional dies, and the molding compound. The redistribution layers include first conductive features in a first dielectric layer. The first conductive features electrically connect the sensor die to the one or more additional dies. The redistribution layers further include an array of electrodes in a second dielectric layer over the first dielectric layer and electrically connected to the sensor die.
    Type: Grant
    Filed: June 29, 2020
    Date of Patent: December 29, 2020
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yu-Chih Huang, Chih-Hsuan Tai, Yu-Jen Cheng, Chih-Hua Chen, Yu-Feng Chen, Hao-Yi Tsai, Chung-Shi Liu, Chen-Hua Yu
  • Patent number: 10861841
    Abstract: A semiconductor device includes passive electrical components in a substrate; and an interconnect structure over the passive electrical components, conductive features of the interconnect structure being electrically coupled to the passive electrical components. The conductive features of the interconnect structure includes a first conductive line over the substrate; a conductive bump over the first conductive line, where in a plan view, the conductive bumps has a first elongated shape and is entirely disposed within boundaries of the first conductive line; and a first via between the first conductive line and the conductive bump, the first via electrically connected to the first conductive line and the conductive bump, where in the plan view, the first via has a second elongated shape and is entirely disposed within boundaries of the conductive bump.
    Type: Grant
    Filed: December 10, 2018
    Date of Patent: December 8, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Ying-Cheng Tseng, Yu-Chih Huang, Chih-Hsuan Tai, Ting-Ting Kuo, Chi-Hui Lai, Ban-Li Wu, Chiahung Liu, Hao-Yi Tsai
  • Publication number: 20200379357
    Abstract: A method of controlling a feedback system with a data matching module of an extreme ultraviolet (EUV) radiation source is disclosed. The method includes obtaining a slit integrated energy (SLIE) sensor data and diffractive optical elements (DOE) data. The method performs a data match, by the data matching module, of a time difference of the SLIE sensor data and the DOE data to identify a mismatched set of the SLIE sensor data and the DOE data. The method also determines whether the time difference of the SLIE sensor data and the DOE data of the mismatched set is within an acceptable range. Based on the determination, the method automatically validates a configurable data of the mismatched set such that the SLIE sensor data of the mismatched set is valid for a reflectivity calculation.
    Type: Application
    Filed: August 17, 2020
    Publication date: December 3, 2020
    Inventors: Yu-Chih HUANG, Chi YANG, Che-Chang HSU, Li-Jui CHEN, Po-Chung CHENG
  • Patent number: 10840227
    Abstract: A semiconductor package includes an integrated passive device (IPD) including one or more passive devices over a first substrate; and metallization layers over and electrically coupled to the one or more passive devices, where a topmost metallization layer of the metallization layers includes a first plurality of conductive patterns; and a second plurality of conductive patterns interleaved with the first plurality of conductive patterns. The IPD also includes a first under bump metallization (UBM) structure over the topmost metallization layer, where the first UBM structure includes a first plurality of conductive strips, each of the first plurality of conductive strips electrically coupled to a respective one of the first plurality of conductive patterns; and a second plurality of conductive strips interleaved with the first plurality of conductive strips, each of the second plurality of conductive strips electrically coupled to a respective one of the second plurality of conductive patterns.
    Type: Grant
    Filed: September 12, 2018
    Date of Patent: November 17, 2020
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yu-Chih Huang, Chi-Hui Lai, Ban-Li Wu, Ying-Cheng Tseng, Ting-Ting Kuo, Chih-Hsuan Tai, Hao-Yi Tsai, Chuei-Tang Wang, Chung-Shi Liu, Chen-Hua Yu, Chiahung Liu
  • Patent number: 10832985
    Abstract: In an embodiment, a device includes: a sensor die having a first surface and a second surface opposite the first surface, the sensor die having an input/output region and a first sensing region at the first surface; an encapsulant at least laterally encapsulating the sensor die; a conductive via extending through the encapsulant; and a front-side redistribution structure on the first surface of the sensor die, the front-side redistribution structure being connected to the conductive via and the sensor die, the front-side redistribution structure covering the input/output region of the sensor die, the front-side redistribution structure having a first opening exposing the first sensing region of the sensor die.
    Type: Grant
    Filed: February 4, 2019
    Date of Patent: November 10, 2020
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Tsung-Hsien Chiang, Yu-Chih Huang, Ting-Ting Kuo, Chih-Hsuan Tai, Ban-Li Wu, Ying-Cheng Tseng, Chi-Hui Lai, Chiahung Liu, Hao-Yi Tsai, Chung-Shi Liu, Chen-Hua Yu
  • Publication number: 20200327214
    Abstract: A device package includes a sensor die, one or more additional dies adjacent the sensor die, and a molding compound encircling the sensor die and the one or more additional dies. The device package further includes redistribution layers over the sensor die, the one or more additional dies, and the molding compound. The redistribution layers include first conductive features in a first dielectric layer. The first conductive features electrically connect the sensor die to the one or more additional dies. The redistribution layers further include an array of electrodes in a second dielectric layer over the first dielectric layer and electrically connected to the sensor die.
    Type: Application
    Filed: June 29, 2020
    Publication date: October 15, 2020
    Inventors: Yu-Chih Huang, Chih-Hsuan Tai, Yu-Jen Cheng, Chih-Hua Chen, Yu-Feng Chen, Hao-Yi Tsai, Chung-Shi Liu, Chen-Hua Yu
  • Publication number: 20200294912
    Abstract: A package structure includes a die, a TIV, a first encapsulant, a RDL structure, a thermal dissipation structure and a second encapsulant. The die has a first surface and a second surface opposite to each other. The TIV is laterally aside the die. The first encapsulant encapsulates sidewalls of the die and sidewalls of the TIV. The RDL structure is disposed on the first surface of the die and on the first encapsulant, electrically connected to the die and the TIV. The thermal dissipation structure is disposed over the second surface of die and electrically connected to the die through the TIV and the RDL structure. The second encapsulant encapsulates sidewalls of the thermal dissipation structure.
    Type: Application
    Filed: March 15, 2019
    Publication date: September 17, 2020
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chih-Hsuan Tai, Hao-Yi Tsai, Tsung-Hsien Chiang, Yu-Chih Huang, Chia-Hung Liu, Ban-Li Wu, Ying-Cheng Tseng, Po-Chun Lin