Patents by Inventor Yu D. Cong

Yu D. Cong has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6893541
    Abstract: A DC magnetron sputter reactor for sputtering copper, its method of use, and shields and other parts promoting self-ionized plasma (SIP) sputtering, preferably at pressures below 5 milliTorr, preferably below 1 milliTorr. Also, a method of coating copper into a narrow and deep via or trench using SIP for a first copper layer. SIP is promoted by a small magnetron having poles of unequal magnetic strength and a high power applied to the target during sputtering. The SIP copper layer can act as a seed and nucleation layer for hole filling with conventional sputtering (PVD) or with electrochemical plating (ECP). For very high aspect-ratio holes, a copper seed layer is deposited by chemical vapor deposition (CVD) over the SIP copper nucleation layer, and PVD or ECP completes the hole filling. The copper seed layer may be deposited by a combination of SIP and high-density plasma sputtering. For very narrow holes, the CVD copper layer may fill the hole.
    Type: Grant
    Filed: December 20, 2002
    Date of Patent: May 17, 2005
    Assignee: Applied Materials, Inc.
    Inventors: Tony P. Chiang, Yu D. Cong, Peijun Ding, Jianming Fu, Howard H. Tang, Anish Tolia
  • Publication number: 20030124846
    Abstract: A DC magnetron sputter reactor for sputtering copper, its method of use, and shields and other parts promoting self-ionized plasma (SIP) sputtering, preferably at pressures below 5 milliTorr, preferably below 1 milliTorr. Also, a method of coating copper into a narrow and deep via or trench using SIP for a first copper layer. SIP is promoted by a small magnetron having poles of unequal magnetic strength and a high power applied to the target during sputtering. The SIP copper layer can act as a seed and nucleation layer for hole filling with conventional sputtering (PVD) or with electrochemical plating (ECP). For very high aspect-ratio holes, a copper seed layer is deposited by chemical vapor deposition (CVD) over the SIP copper nucleation layer, and PVD or ECP completes the hole filling. The copper seed layer may be deposited by a combination of SIP and high-density plasma sputtering. For very narrow holes, the CVD copper layer may fill the hole.
    Type: Application
    Filed: December 20, 2002
    Publication date: July 3, 2003
    Inventors: Tony P. Chiang, Yu D. Cong, Peijun Ding, Jianming Fu, Howard H. Tang, Anish Tolia
  • Patent number: 6582569
    Abstract: A DC magnetron sputter reactor for sputtering copper, its method of use, and shields and other parts promoting self-ionized plasma (SIP) sputtering, preferably at pressures below 5 milliTorr, preferably below 1 milliTorr. Also, a method of coating copper into a narrow and deep via or trench using SIP for a first copper layer. SIP is promoted by a small magnetron having poles of unequal magnetic strength and a high power applied to the target during sputtering. The SIP copper layer can act as a seed and nucleation layer for hole filling with conventional sputtering (PVD) or with electrochemical plating (ECP). For very high aspect-ratio holes, a copper seed layer is deposited by chemical vapor deposition (CVD) over the SIP copper nucleation layer, and PVD or ECP completes the hole filling. The copper seed layer may be deposited by a combination of SIP and high-density plasma sputtering. For very narrow holes, the CVD copper layer may fill the hole.
    Type: Grant
    Filed: October 10, 2000
    Date of Patent: June 24, 2003
    Assignee: Applied Materials, Inc.
    Inventors: Tony P. Chiang, Yu D. Cong, Peijun Ding, Jianming Fu, Howard H. Tang, Anish Tolia
  • Patent number: 6413383
    Abstract: A DC magnetron sputter reactor for sputtering copper, its method of use, particularly the ignition sequence, and shields and other parts promoting self-ionized plasma (SIP) sputtering, preferably at pressures below 5 milliTorr, preferably below 1 milliTorr. The SIP copper layer can act as a seed and nucleation layer for hole filling with conventional sputtering (PVD) or with electrochemical plating (ECP). Preferably, the plasma is ignited in a cool process in which low power is applied to the target in the presence of a higher pressure of argon working gas. After ignition, the pressure is reduced, and target power is ramped up to a relatively high operational level to sputter deposit the film.
    Type: Grant
    Filed: October 10, 2000
    Date of Patent: July 2, 2002
    Assignee: Applied Materials, Inc.
    Inventors: Tony P. Chiang, Yu D. Cong, Peijun Ding, Jianming Fu, Howard H. Tang, Anish Tolia
  • Patent number: 6398929
    Abstract: A DC magnetron sputter reactor for sputtering copper, its method of use, and shields and other parts promoting self-ionized plasma (SIP) sputtering, preferably at pressures below 5 milliTorr, preferably below 1 milliTorr. Also, a method of coating copper into a narrow and deep via or trench using SIP for a first copper layer. SIP is promoted by a small magnetron having poles of unequal magnetic strength and a high power applied to the target during sputtering. The target power for a 200 mm wafer is preferably at least 10 kW; more preferably, at least 18 kW; and most preferably, at least 24 kW. Hole filling with SIP is improved by long-throw sputtering in which the target-to-substrate spacing is at least 50% of substrate diameter, more preferably at least 80%, most preferably at least 140%. The SIP copper layer can act as a seed and nucleation layer for hole filling with conventional sputtering (PVD) or with electrochemical plating (ECP).
    Type: Grant
    Filed: October 8, 1999
    Date of Patent: June 4, 2002
    Assignee: Applied Materials, Inc.
    Inventors: Tony P. Chiang, Yu D. Cong, Peijun Ding, Jianming Fu, Howard H. Tang, Anish Tolia