Patents by Inventor Yu-dong Wang

Yu-dong Wang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230229515
    Abstract: In a job management environment comprising a plurality of job systems and a scheduler for scheduling a job submitted to the job management environment to a job system for running, a processor, in a first job system, intercepts, from outside of a first container in the first job system, a first job from being sent to the scheduler. A processor, in the first job system, determines whether the first job is submitted from a container in the first job system. In response to a first determination that the first job is submitted from a container in the first job system, a processor, in the first job system, determines contexts of the first job, the contexts of the first job including a context related to the first container. A processor, in the first job system, sends the first job together with the contexts of the first job to the scheduler.
    Type: Application
    Filed: January 18, 2022
    Publication date: July 20, 2023
    Inventors: Xun Pan, Wen Qing Jin, Chao Deng, Yu Dong Wang
  • Patent number: 9922888
    Abstract: The present invention provides a general four-port on-wafer high frequency de-embedding method. The method comprises: for each on-wafer de-embedding dummy, building a model considering the distributive nature of high frequency characteristics of the on-wafer de-embedding dummy; obtaining the intrinsic Y-parameter admittance matrix of said N on-wafer de-embedding dummies by calculation or simulation by using said models; and solving the equation set which the corresponding measurement and calculation or simulation data of said on-wafer de-embedding dummies satisfy for the elements of the related admittance matrices of the parasitic four-port network to be stripped in de-embedding and model parameters of models on which said calculation or simulation is based.
    Type: Grant
    Filed: May 2, 2016
    Date of Patent: March 20, 2018
    Assignee: Tsinghua University
    Inventors: Jun Fu, Yu-dong Wang, Jie Cui, Yue Zhao, Wen-pu Cui, Zhi-hong Liu
  • Publication number: 20170287792
    Abstract: The present invention provides a general four-port on-wafer high frequency de-embedding method. The method comprises: for each on-wafer de-embedding dummy, building a model considering the distributive nature of high frequency characteristics of the on-wafer de-embedding dummy; obtaining the intrinsic Y-parameter admittance matrix of said N on-wafer de-embedding dummies by calculation or simulation by using said models; and solving the equation set which the corresponding measurement and calculation or simulation data of said on-wafer de-embedding dummies satisfy for the elements of the related admittance matrices of the parasitic four-port network to be stripped in de-embedding and model parameters of models on which said calculation or simulation is based.
    Type: Application
    Filed: May 2, 2016
    Publication date: October 5, 2017
    Inventors: Jun FU, Yu-dong WANG, Jie CUI, Yue ZHAO, Wen-pu CUI, Zhi-hong LIU
  • Patent number: 9202901
    Abstract: The present invention discloses a metal silicide self-aligned SiGe heterojunction bipolar transistor, which is designed to overcome the shortcomings such as the large base resistance RB of the prior art products. The metal silicide self-aligned SiGe heterojunction bipolar transistor of the present invention mainly comprises an Si collector region, a local dielectric region, a base region, a base-region low-resistance metal silicide layer, a polysilicon emitter region, an emitter-base spacer dielectric region composed of a liner silicon oxide layer and a silicon nitride inner sidewall, a monocrystalline emitter region, a contact hole dielectric layer, an emitter metal electrode and a base metal electrode. The base-region low-resistance metal silicide layer extends all the way to the outside of the emitter-base spacer dielectric region. The present invention discloses a method of forming a metal silicide self-aligned SiGe heterojunction bipolar transistor, which is used to form the aforesaid bipolar transistor.
    Type: Grant
    Filed: February 25, 2014
    Date of Patent: December 1, 2015
    Assignee: Tsinghua University
    Inventors: Jun Fu, Yu-dong Wang, Wei Zhang, Gao-qing Li, Zheng-li Wu, Jie Cui, Yue Zhao, Zhi-hong Liu
  • Patent number: 9012291
    Abstract: The present invention discloses a bipolar transistor with an embedded epitaxial external base region, which is designed to solve the problem of the TED effect with the prior art structures. The bipolar transistor with an embedded epitaxial external base region of the present invention comprises at least a collector region, a base region and an external base region on the collector region, an emitter on the base region, and sidewalls at both sides of the emitter. The external base region is grown through an in-situ doping selective epitaxy process and is embedded in the collector region. A portion of the external base region is located beneath the sidewalls. The present invention discloses a method of forming a bipolar transistor with an embedded epitaxial external base region.
    Type: Grant
    Filed: July 18, 2014
    Date of Patent: April 21, 2015
    Assignee: Tsinghua University
    Inventors: Yu-dong Wang, Jun Fu, Jie Cui, Yue Zhao, Zhi-hong Liu, Wei Zhang, Gao-qing Li, Zheng-li Wu, Ping Xu
  • Publication number: 20140329368
    Abstract: The present invention discloses a bipolar transistor with an embedded epitaxial external base region, which is designed to solve the problem of the TED effect with the prior art structures. The bipolar transistor with an embedded epitaxial external base region of the present invention comprises at least a collector region, a base region and an external base region on the collector region, an emitter on the base region, and sidewalls at both sides of the emitter. The external base region is grown through an in-situ doping selective epitaxy process and is embedded in the collector region. A portion of the external base region is located beneath the sidewalls. The present invention discloses a method of forming a bipolar transistor with an embedded epitaxial external base region.
    Type: Application
    Filed: July 18, 2014
    Publication date: November 6, 2014
    Inventors: Yu-dong Wang, Jun Fu, Jie Cui, Yue Zhao, Zhi-hong Liu, Wei Zhang, Gao-qing Li, Zheng-li Wu, Ping Xu
  • Publication number: 20140175520
    Abstract: The present invention discloses a metal silicide self-aligned SiGe heterojunction bipolar transistor, which is designed to overcome the shortcomings such as the large base resistance RB of the prior art products. The metal silicide self-aligned SiGe heterojunction bipolar transistor of the present invention mainly comprises an Si collector region, a local dielectric region, a base region, a base-region low-resistance metal silicide layer, a polysilicon emitter region, an emitter-base spacer dielectric region composed of a liner silicon oxide layer and a silicon nitride inner sidewall, a monocrystalline emitter region, a contact hole dielectric layer, an emitter metal electrode and a base metal electrode. The base-region low-resistance metal silicide layer extends all the way to the outside of the emitter-base spacer dielectric region. The present invention discloses a method of forming a metal silicide self-aligned SiGe heterojunction bipolar transistor, which is used to form the aforesaid bipolar transistor.
    Type: Application
    Filed: February 25, 2014
    Publication date: June 26, 2014
    Applicant: Tsinghua University
    Inventors: Jun Fu, Yu-dong Wang, Wei Zhang, Gao-qing Li, Zheng-li Wu, Jie Cui, Yue Zhao, Zhi-hong Liu
  • Publication number: 20130313614
    Abstract: The present invention discloses a metal silicide self-aligned SiGe heterojunction bipolar transistor, which is designed to overcome the shortcomings such as the large base resistance RB of the prior art products. The metal silicide self-aligned SiGe heterojunction bipolar transistor of the present invention mainly comprises an Si collector region, a local dielectric region, a base region, a base-region low-resistance metal silicide layer, a polysilicon emitter region, an emitter-base spacer dielectric region composed of a liner silicon oxide layer and a silicon nitride inner sidewall, a monocrystalline emitter region, a contact hole dielectric layer, an emitter metal electrode and a base metal electrode. The base-region low-resistance metal silicide layer extends all the way to the outside of the emitter-base spacer dielectric region. The present invention discloses a method of forming a metal silicide self-aligned SiGe heterojunction bipolar transistor, which is used to form the aforesaid bipolar transistor.
    Type: Application
    Filed: September 24, 2012
    Publication date: November 28, 2013
    Applicant: TSINGHUA UNIVERSITY
    Inventors: Jun Fu, Yu-dong Wang, Wei Zhang, Gao-qing Li, Zheng-li Wu, Jie Cui, Yue Zhao, Zhi-hong Liu
  • Publication number: 20130307122
    Abstract: The present invention discloses a bipolar transistor with an embedded epitaxial external base region, which is designed to solve the problem of the TED effect with the prior art structures. The bipolar transistor with an embedded epitaxial external base region of the present invention comprises at least a collector region, a base region and an external base region on the collector region, an emitter on the base region, and sidewalls at both sides of the emitter. The external base region is grown through an in-situ doping selective epitaxy process and is embedded in the collector region. A portion of the external base region is located beneath the sidewalls. The present invention discloses a method of forming a bipolar transistor with an embedded epitaxial external base region.
    Type: Application
    Filed: September 24, 2012
    Publication date: November 21, 2013
    Applicant: TSINGHUA UNIVERSITY
    Inventors: Yu-dong Wang, Jun Fu, Jie Cui, Yue Zhao, Zhi-hong Liu, Wei Zhang, Gao-qing Li, Zheng-li Wu, Ping Xu